A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation
We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transform...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2782 - 2790 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.304 |
Cover
Loading…
Abstract | We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transformation, a new weighted variational model is proposed for better prior representation, which is imposed in the regularization terms. Different from conventional variational models, the proposed model can preserve the estimated reflectance with more details. Moreover, the proposed model can suppress noise to some extent. An alternating minimization scheme is adopted to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed model with its algorithm. Compared with other variational methods, the proposed method yields comparable or better results on both subjective and objective assessments. |
---|---|
AbstractList | We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transformation, a new weighted variational model is proposed for better prior representation, which is imposed in the regularization terms. Different from conventional variational models, the proposed model can preserve the estimated reflectance with more details. Moreover, the proposed model can suppress noise to some extent. An alternating minimization scheme is adopted to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed model with its algorithm. Compared with other variational methods, the proposed method yields comparable or better results on both subjective and objective assessments. |
Author | Delu Zeng Xinghao Ding Xueyang Fu Yue Huang Xiao-Ping Zhang |
Author_xml | – sequence: 1 surname: Xueyang Fu fullname: Xueyang Fu email: fxy@stu.xmu.edu.cn organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China – sequence: 2 surname: Delu Zeng fullname: Delu Zeng email: dltsang@xmu.edu.cn organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China – sequence: 3 surname: Yue Huang fullname: Yue Huang email: yhuang2010@xmu.edu.cn organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China – sequence: 4 surname: Xiao-Ping Zhang fullname: Xiao-Ping Zhang email: xzhang@ee.ryerson.ca organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China – sequence: 5 surname: Xinghao Ding fullname: Xinghao Ding email: dltsang@xmu.edu.cn organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China |
BookMark | eNotTz1PwzAUNAgkSunIxOI_kOBnJ_bzWFWlVCoCFVrGykmewchJUJIO_HuiwnR30n3ortlF0zbE2C2IFEDY-8X-ZZtKATpVIjtjM2sQMm0UYg5wziYgtEq0BXvFZn3_JYQAqxHQTthuzt8pfHwOVPG964IbQtu4yJ_aiiL3bcdfQ32Mg2uoPfZ8Sz5SOaqSuGsqvo7xWIfmlOLLfgj1id6wS-9iT7N_nLLdw_Jt8ZhsnlfrxXyTBJnBkJi8gFzKUqJ0Agoy0krEylfGeyIsFBqkzFlLojTWCdSjWVlfFDoHsl5N2d1fbyCiw3c3znc_B2NQjO_VLy_JUzs |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.304 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 2790 |
ExternalDocumentID | 7780673 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-75b1522c282a01be729288dfd7ffee8b3878e4a99e0c79a08622c39fbb651e9f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-75b1522c282a01be729288dfd7ffee8b3878e4a99e0c79a08622c39fbb651e9f3 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780673 |
PublicationCentury | 2000 |
PublicationDate | 2016-06 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.5514338 |
Snippet | We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2782 |
SubjectTerms | Adaptation models Computational modeling Lighting Linear programming Mathematical model Minimization |
Title | A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation |
URI | https://ieeexplore.ieee.org/document/7780673 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJ2ubL8YiqVgWpqCq0dKsc-yxVoBTRZOHXc5ekKUIMbImVwbrYfvfOd_cYu1WESUGoHDCxcYII9xy1v3WMJ3SkjA_aElGcPEXjefC4DJcNdlfXwgBAkXwGLj0Wd_lmo3MKlXWFiElX5YAdIHEra7X28RQZIfbI-t1HZhPJ-kbBIzWWfY_N7mAxnVFiV-T6pNH2Q1mlAJZRi012UyrzSd7cPEtc_fWrW-N_53zEOvsSPj6twemYNSA9Ya3K5-TVjt7i0E7WYTfWZvN7_loETPHDBVLpKlzISTbtnaOTy5_XlIeoUtjkWz4DS6F_Wj1cpYY_kHbyugwy8iGeIGVxZIfNR8OXwdip1BecNaJ65ogwQWz3NHIy1esngF64F8fGGmEtQJz4sYghUFJCTwupiBp52pc2SaKwD9L6p6yZblI4Y9wkAR4UBi3hyUBYJbX0AyPCvraKGvCdszYZbvVRNthYVTa7-Hv4kh3Sjyvzta5YM_vM4Ro9gyy5KZbEN-pStrA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_Boi_S13aMhEFAgBAG5ke3ubEI0xUh78de705ZijAdv7aRpNrOPb2Z2Zj5C7gRikucLC1SoLC8wew7b31rKYTIQygWp0VEcjoLezHta-IsKuS9rYQAgSz4DGx-zu3y1limGypqMhcirskf2ze_9Vl6ttYuo8MCgDy_fXePbBLy8U3CQj2XXZbPZno8nmNoV2C6ytP3gVsmgpVsjw-2g8oySNztNIlt-_erX-N9RH5HGroiPjkt4OiYViE9IrbA6abGnN0a0JXbYyupk9khfs5Cp-XBunOkiYEiROO2dGjOXvqwwE1HEsE43dAIag_-4fqiIFe0je_IqDzPSjjlD8vLIBpl1O9N2zyr4F6yVwfXEYn5k0N2RxisTD60IjB3uhKHSimkNEEZuyELwBOfwIBkX6Bw50uU6igK_BVy7p6Qar2M4I1RFnjkqlNGEwz2mBZfc9RTzW1ILbMF3TuqouOVH3mJjWejs4m_xLTnoTYeD5aA_er4khziJefbWFakmnylcGzshiW6y5fENoYe5-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=A+Weighted+Variational+Model+for+Simultaneous+Reflectance+and+Illumination+Estimation&rft.au=Xueyang+Fu&rft.au=Delu+Zeng&rft.au=Yue+Huang&rft.au=Xiao-Ping+Zhang&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2782&rft.epage=2790&rft_id=info:doi/10.1109%2FCVPR.2016.304&rft.externalDocID=7780673 |