A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation

We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transform...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2782 - 2790
Main Authors Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, Xinghao Ding
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.304

Cover

Loading…
Abstract We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transformation, a new weighted variational model is proposed for better prior representation, which is imposed in the regularization terms. Different from conventional variational models, the proposed model can preserve the estimated reflectance with more details. Moreover, the proposed model can suppress noise to some extent. An alternating minimization scheme is adopted to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed model with its algorithm. Compared with other variational methods, the proposed method yields comparable or better results on both subjective and objective assessments.
AbstractList We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted for ease of modeling, the log-transformed image for this task is not ideal. Based on the previous investigation of the logarithmic transformation, a new weighted variational model is proposed for better prior representation, which is imposed in the regularization terms. Different from conventional variational models, the proposed model can preserve the estimated reflectance with more details. Moreover, the proposed model can suppress noise to some extent. An alternating minimization scheme is adopted to solve the proposed model. Experimental results demonstrate the effectiveness of the proposed model with its algorithm. Compared with other variational methods, the proposed method yields comparable or better results on both subjective and objective assessments.
Author Delu Zeng
Xinghao Ding
Xueyang Fu
Yue Huang
Xiao-Ping Zhang
Author_xml – sequence: 1
  surname: Xueyang Fu
  fullname: Xueyang Fu
  email: fxy@stu.xmu.edu.cn
  organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China
– sequence: 2
  surname: Delu Zeng
  fullname: Delu Zeng
  email: dltsang@xmu.edu.cn
  organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China
– sequence: 3
  surname: Yue Huang
  fullname: Yue Huang
  email: yhuang2010@xmu.edu.cn
  organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China
– sequence: 4
  surname: Xiao-Ping Zhang
  fullname: Xiao-Ping Zhang
  email: xzhang@ee.ryerson.ca
  organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China
– sequence: 5
  surname: Xinghao Ding
  fullname: Xinghao Ding
  email: dltsang@xmu.edu.cn
  organization: Fujian Key Lab. of Sensing & Comput. for Smart City, Xiamen Univ., Xiamen, China
BookMark eNotTz1PwzAUNAgkSunIxOI_kOBnJ_bzWFWlVCoCFVrGykmewchJUJIO_HuiwnR30n3ortlF0zbE2C2IFEDY-8X-ZZtKATpVIjtjM2sQMm0UYg5wziYgtEq0BXvFZn3_JYQAqxHQTthuzt8pfHwOVPG964IbQtu4yJ_aiiL3bcdfQ32Mg2uoPfZ8Sz5SOaqSuGsqvo7xWIfmlOLLfgj1id6wS-9iT7N_nLLdw_Jt8ZhsnlfrxXyTBJnBkJi8gFzKUqJ0Agoy0krEylfGeyIsFBqkzFlLojTWCdSjWVlfFDoHsl5N2d1fbyCiw3c3znc_B2NQjO_VLy_JUzs
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.304
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 2790
ExternalDocumentID 7780673
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-75b1522c282a01be729288dfd7ffee8b3878e4a99e0c79a08622c39fbb651e9f3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-75b1522c282a01be729288dfd7ffee8b3878e4a99e0c79a08622c39fbb651e9f3
PageCount 9
ParticipantIDs ieee_primary_7780673
PublicationCentury 2000
PublicationDate 2016-06
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.5514338
Snippet We propose a weighted variational model to estimate both the reflectance and the illumination from an observed image. We show that, though it is widely adopted...
SourceID ieee
SourceType Publisher
StartPage 2782
SubjectTerms Adaptation models
Computational modeling
Lighting
Linear programming
Mathematical model
Minimization
Title A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation
URI https://ieeexplore.ieee.org/document/7780673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJ2ubL8YiqVgWpqCq0dKsc-yxVoBTRZOHXc5ekKUIMbImVwbrYfvfOd_cYu1WESUGoHDCxcYII9xy1v3WMJ3SkjA_aElGcPEXjefC4DJcNdlfXwgBAkXwGLj0Wd_lmo3MKlXWFiElX5YAdIHEra7X28RQZIfbI-t1HZhPJ-kbBIzWWfY_N7mAxnVFiV-T6pNH2Q1mlAJZRi012UyrzSd7cPEtc_fWrW-N_53zEOvsSPj6twemYNSA9Ya3K5-TVjt7i0E7WYTfWZvN7_loETPHDBVLpKlzISTbtnaOTy5_XlIeoUtjkWz4DS6F_Wj1cpYY_kHbyugwy8iGeIGVxZIfNR8OXwdip1BecNaJ65ogwQWz3NHIy1esngF64F8fGGmEtQJz4sYghUFJCTwupiBp52pc2SaKwD9L6p6yZblI4Y9wkAR4UBi3hyUBYJbX0AyPCvraKGvCdszYZbvVRNthYVTa7-Hv4kh3Sjyvzta5YM_vM4Ro9gyy5KZbEN-pStrA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_Boi_S13aMhEFAgBAG5ke3ubEI0xUh78de705ZijAdv7aRpNrOPb2Z2Zj5C7gRikucLC1SoLC8wew7b31rKYTIQygWp0VEcjoLezHta-IsKuS9rYQAgSz4DGx-zu3y1limGypqMhcirskf2ze_9Vl6ttYuo8MCgDy_fXePbBLy8U3CQj2XXZbPZno8nmNoV2C6ytP3gVsmgpVsjw-2g8oySNztNIlt-_erX-N9RH5HGroiPjkt4OiYViE9IrbA6abGnN0a0JXbYyupk9khfs5Cp-XBunOkiYEiROO2dGjOXvqwwE1HEsE43dAIag_-4fqiIFe0je_IqDzPSjjlD8vLIBpl1O9N2zyr4F6yVwfXEYn5k0N2RxisTD60IjB3uhKHSimkNEEZuyELwBOfwIBkX6Bw50uU6igK_BVy7p6Qar2M4I1RFnjkqlNGEwz2mBZfc9RTzW1ILbMF3TuqouOVH3mJjWejs4m_xLTnoTYeD5aA_er4khziJefbWFakmnylcGzshiW6y5fENoYe5-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=A+Weighted+Variational+Model+for+Simultaneous+Reflectance+and+Illumination+Estimation&rft.au=Xueyang+Fu&rft.au=Delu+Zeng&rft.au=Yue+Huang&rft.au=Xiao-Ping+Zhang&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2782&rft.epage=2790&rft_id=info:doi/10.1109%2FCVPR.2016.304&rft.externalDocID=7780673