Multi-Agent Reinforcement Learning for Autonomous On Demand Vehicles

In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption o...

Full description

Saved in:
Bibliographic Details
Published inIEEE Intelligent Vehicles Symposium pp. 1461 - 1468
Main Authors Boyali, Ali, Hashimoto, Naohisa, John, Vijay, Acarman, Tankut
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text
ISSN2642-7214
DOI10.1109/IVS.2019.8813876

Cover

Loading…
Abstract In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption of the electric vehicles. A stochastic simulation environment for an ATODV pilot project is coded in the Python environment to train the autonomous cart decision process as agents with artificial intelligence. Passenger group behavior, get-on and get-off times, destinations are modeled as random variables. A single Deep Q-Learning Network is trained subject to multi-agent settings. The ATODV system's independent decision making for the carts to reduce the passenger's waiting time while constraining the energy consumption and empty vehicle motion is evaluated.
AbstractList In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption of the electric vehicles. A stochastic simulation environment for an ATODV pilot project is coded in the Python environment to train the autonomous cart decision process as agents with artificial intelligence. Passenger group behavior, get-on and get-off times, destinations are modeled as random variables. A single Deep Q-Learning Network is trained subject to multi-agent settings. The ATODV system's independent decision making for the carts to reduce the passenger's waiting time while constraining the energy consumption and empty vehicle motion is evaluated.
Author Acarman, Tankut
Boyali, Ali
John, Vijay
Hashimoto, Naohisa
Author_xml – sequence: 1
  givenname: Ali
  surname: Boyali
  fullname: Boyali, Ali
  email: ali-boyali@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology, Japan
– sequence: 2
  givenname: Naohisa
  surname: Hashimoto
  fullname: Hashimoto, Naohisa
  email: naohisa-hashimoto@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology, Japan
– sequence: 3
  givenname: Vijay
  surname: John
  fullname: John, Vijay
  email: vijayjohn@toyota-ti.ac.jp
  organization: Toyota Technological Institute, Japan
– sequence: 4
  givenname: Tankut
  surname: Acarman
  fullname: Acarman, Tankut
  email: tacarman@gsu.edu.tr
  organization: Galatasaray University, Istanbul, 34349, Turkey
BookMark eNotj0tLw0AUhUdRsKnuBTfzBxLvvZOZzCxD66MQKfjotiTpTR1pJpLHwn9vxW7O4TuLD04kLkIXWIhbhAQR3P1q85YQoEusRWUzcyYizMgiaAPuXMzIpBRnhOmViIbhC0BrIpyJ5ct0GH2c7zmM8pV9aLq-5vaPCi774MNeHieZT2MXurabBrkOcsltGXZyw5--PvBwLS6b8jDwzann4uPx4X3xHBfrp9UiL2JPKY5xpqFqtEuVOqZWYIxC2unKGoZKaVs7pRsHJTAacnVVNhVBxRa0owxrUnNx9-_1zLz97n1b9j_b02P1C8JXSqk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IVS.2019.8813876
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728105609
9781728105604
EISSN 2642-7214
EndPage 1468
ExternalDocumentID 8813876
Genre orig-research
GroupedDBID 29I
29J
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i241t-750bf59433f5953066312d5b86e0b358c935f90a0e1629cbafb20be8059271c23
IEDL.DBID RIE
IngestDate Wed Aug 27 07:35:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-750bf59433f5953066312d5b86e0b358c935f90a0e1629cbafb20be8059271c23
PageCount 8
ParticipantIDs ieee_primary_8813876
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE Intelligent Vehicles Symposium
PublicationTitleAbbrev IVS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0055221
Score 2.0852225
Snippet In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement...
SourceID ieee
SourceType Publisher
StartPage 1461
SubjectTerms Decision making
Electric vehicles
Elevators
Energy consumption
Intelligent vehicles
Neural networks
Q-learning
Random variables
Stochastic processes
Time factors
Title Multi-Agent Reinforcement Learning for Autonomous On Demand Vehicles
URI https://ieeexplore.ieee.org/document/8813876
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nWDho0V8ywMjaRM7TuKxolQFqYCAVt0q27kAQiQIkoVfj-205UMMLFFkKUrki33P9nvvAE5oyoUfptRTIkGzQIkjT2CqPRUzW9o2YDqy4uTxVTSahJczPmvA6UoLg4iOfIZde-vO8tNCV3arrJckATOjtwlNs3CrtVrLWZcbHBEsjyF90buY3lnelv0R3DM_iqe43DHcgPHyrTVl5LlblaqrP34ZMv73szah86XSIzer_LMFDcy3Yf2bwWAbBk5f6_WtforconNJ1W5DkCyMVR-IaSL9qrTihqJ6J9c5GeCLzFMyxUfHmevAZHh-fzbyFnUTvCeTj0vPgACVcREyZq6cWVARmJioJEJfMZ5owXgmfOljEFGhlcwU9RUmBmnRONCU7UArL3LcBSJplkkTxSQOZRhSKVPKWBRK6ossNfBgD9q2P-avtTXGfNEV-383H8CajUnNtDqEVvlW4ZHJ6aU6dsH8BOl4oME
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHi3ijQdG0ia28_BYUaoW2oKgrbpVtuMAQiQIkoWvx3ba8hADSxRZihz5Or4n9jnnApzh2GcujbEjWKT0D0oYOEzF0hEhMaVtPSIDI04eDIPumF5N_WkFzpdaGKWUJZ-phrm1Z_lxJguzVdaMIo_or3cFVnXep6xUay3WXV8jCW9xEOmyZm9yb5hbZirYp36UT7HZo7MJg0W_JWnkuVHkoiE_flky_vfFtqD-pdNDt8sMtA0Vle7AxjeLwRq0rcLWaRkFFbpT1idV2i1BNLdWfUC6CbWK3MgbsuId3aSorV54GqOJerSsuTqMO5eji64zr5zgPOmMnDsaBojEZ5QQffWJgRWejoqIAuUK4keSET9hLneVF2AmBU8EdoWKNNbCoScx2YVqmqVqDxDHScJ1HKOQckox5zEmJKAcuyyJNUDYh5oZj9lraY4xmw_Fwd_Np7DWHQ36s35veH0I6yY-Je_qCKr5W6GOdYbPxYkN7CeLx6QR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Multi-Agent+Reinforcement+Learning+for+Autonomous+On+Demand+Vehicles&rft.au=Boyali%2C+Ali&rft.au=Hashimoto%2C+Naohisa&rft.au=John%2C+Vijay&rft.au=Acarman%2C+Tankut&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=2642-7214&rft.spage=1461&rft.epage=1468&rft_id=info:doi/10.1109%2FIVS.2019.8813876&rft.externalDocID=8813876