Multi-Agent Reinforcement Learning for Autonomous On Demand Vehicles
In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption o...
Saved in:
Published in | IEEE Intelligent Vehicles Symposium pp. 1461 - 1468 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-7214 |
DOI | 10.1109/IVS.2019.8813876 |
Cover
Loading…
Abstract | In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption of the electric vehicles. A stochastic simulation environment for an ATODV pilot project is coded in the Python environment to train the autonomous cart decision process as agents with artificial intelligence. Passenger group behavior, get-on and get-off times, destinations are modeled as random variables. A single Deep Q-Learning Network is trained subject to multi-agent settings. The ATODV system's independent decision making for the carts to reduce the passenger's waiting time while constraining the energy consumption and empty vehicle motion is evaluated. |
---|---|
AbstractList | In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement learning is implemented to reduce the mean waiting time of the passengers, and a cost function is introduced to penalize the energy consumption of the electric vehicles. A stochastic simulation environment for an ATODV pilot project is coded in the Python environment to train the autonomous cart decision process as agents with artificial intelligence. Passenger group behavior, get-on and get-off times, destinations are modeled as random variables. A single Deep Q-Learning Network is trained subject to multi-agent settings. The ATODV system's independent decision making for the carts to reduce the passenger's waiting time while constraining the energy consumption and empty vehicle motion is evaluated. |
Author | Acarman, Tankut Boyali, Ali John, Vijay Hashimoto, Naohisa |
Author_xml | – sequence: 1 givenname: Ali surname: Boyali fullname: Boyali, Ali email: ali-boyali@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology, Japan – sequence: 2 givenname: Naohisa surname: Hashimoto fullname: Hashimoto, Naohisa email: naohisa-hashimoto@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology, Japan – sequence: 3 givenname: Vijay surname: John fullname: John, Vijay email: vijayjohn@toyota-ti.ac.jp organization: Toyota Technological Institute, Japan – sequence: 4 givenname: Tankut surname: Acarman fullname: Acarman, Tankut email: tacarman@gsu.edu.tr organization: Galatasaray University, Istanbul, 34349, Turkey |
BookMark | eNotj0tLw0AUhUdRsKnuBTfzBxLvvZOZzCxD66MQKfjotiTpTR1pJpLHwn9vxW7O4TuLD04kLkIXWIhbhAQR3P1q85YQoEusRWUzcyYizMgiaAPuXMzIpBRnhOmViIbhC0BrIpyJ5ct0GH2c7zmM8pV9aLq-5vaPCi774MNeHieZT2MXurabBrkOcsltGXZyw5--PvBwLS6b8jDwzann4uPx4X3xHBfrp9UiL2JPKY5xpqFqtEuVOqZWYIxC2unKGoZKaVs7pRsHJTAacnVVNhVBxRa0owxrUnNx9-_1zLz97n1b9j_b02P1C8JXSqk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IVS.2019.8813876 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1728105609 9781728105604 |
EISSN | 2642-7214 |
EndPage | 1468 |
ExternalDocumentID | 8813876 |
Genre | orig-research |
GroupedDBID | 29I 29J 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i241t-750bf59433f5953066312d5b86e0b358c935f90a0e1629cbafb20be8059271c23 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 07:35:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-750bf59433f5953066312d5b86e0b358c935f90a0e1629cbafb20be8059271c23 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8813876 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE Intelligent Vehicles Symposium |
PublicationTitleAbbrev | IVS |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0055221 |
Score | 2.0852225 |
Snippet | In this study, we elaborate the procedure of designing a supervisory controller for the Autonomous Transit on Demand Vehicle (ATODV) system. Reinforcement... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1461 |
SubjectTerms | Decision making Electric vehicles Elevators Energy consumption Intelligent vehicles Neural networks Q-learning Random variables Stochastic processes Time factors |
Title | Multi-Agent Reinforcement Learning for Autonomous On Demand Vehicles |
URI | https://ieeexplore.ieee.org/document/8813876 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nWDho0V8ywMjaRM7TuKxolQFqYCAVt0q27kAQiQIkoVfj-205UMMLFFkKUrki33P9nvvAE5oyoUfptRTIkGzQIkjT2CqPRUzW9o2YDqy4uTxVTSahJczPmvA6UoLg4iOfIZde-vO8tNCV3arrJckATOjtwlNs3CrtVrLWZcbHBEsjyF90buY3lnelv0R3DM_iqe43DHcgPHyrTVl5LlblaqrP34ZMv73szah86XSIzer_LMFDcy3Yf2bwWAbBk5f6_WtforconNJ1W5DkCyMVR-IaSL9qrTihqJ6J9c5GeCLzFMyxUfHmevAZHh-fzbyFnUTvCeTj0vPgACVcREyZq6cWVARmJioJEJfMZ5owXgmfOljEFGhlcwU9RUmBmnRONCU7UArL3LcBSJplkkTxSQOZRhSKVPKWBRK6ossNfBgD9q2P-avtTXGfNEV-383H8CajUnNtDqEVvlW4ZHJ6aU6dsH8BOl4oME |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAWHi3ijQdG0ia28_BYUaoW2oKgrbpVtuMAQiQIkoWvx3ba8hADSxRZihz5Or4n9jnnApzh2GcujbEjWKT0D0oYOEzF0hEhMaVtPSIDI04eDIPumF5N_WkFzpdaGKWUJZ-phrm1Z_lxJguzVdaMIo_or3cFVnXep6xUay3WXV8jCW9xEOmyZm9yb5hbZirYp36UT7HZo7MJg0W_JWnkuVHkoiE_flky_vfFtqD-pdNDt8sMtA0Vle7AxjeLwRq0rcLWaRkFFbpT1idV2i1BNLdWfUC6CbWK3MgbsuId3aSorV54GqOJerSsuTqMO5eji64zr5zgPOmMnDsaBojEZ5QQffWJgRWejoqIAuUK4keSET9hLneVF2AmBU8EdoWKNNbCoScx2YVqmqVqDxDHScJ1HKOQckox5zEmJKAcuyyJNUDYh5oZj9lraY4xmw_Fwd_Np7DWHQ36s35veH0I6yY-Je_qCKr5W6GOdYbPxYkN7CeLx6QR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Intelligent+Vehicles+Symposium&rft.atitle=Multi-Agent+Reinforcement+Learning+for+Autonomous+On+Demand+Vehicles&rft.au=Boyali%2C+Ali&rft.au=Hashimoto%2C+Naohisa&rft.au=John%2C+Vijay&rft.au=Acarman%2C+Tankut&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=2642-7214&rft.spage=1461&rft.epage=1468&rft_id=info:doi/10.1109%2FIVS.2019.8813876&rft.externalDocID=8813876 |