Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs

Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of ima...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5425 - 5434
Main Authors Monti, Federico, Boscaini, Davide, Masci, Jonathan, Rodola, Emanuele, Svoboda, Jan, Bronstein, Michael M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2017.576

Cover

Abstract Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclidean-structured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graph-and 3D shape analysis and show that it consistently outperforms previous approaches.
AbstractList Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclidean-structured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graph-and 3D shape analysis and show that it consistently outperforms previous approaches.
Author Monti, Federico
Masci, Jonathan
Svoboda, Jan
Boscaini, Davide
Rodola, Emanuele
Bronstein, Michael M.
Author_xml – sequence: 1
  givenname: Federico
  surname: Monti
  fullname: Monti, Federico
– sequence: 2
  givenname: Davide
  surname: Boscaini
  fullname: Boscaini, Davide
– sequence: 3
  givenname: Jonathan
  surname: Masci
  fullname: Masci, Jonathan
– sequence: 4
  givenname: Emanuele
  surname: Rodola
  fullname: Rodola, Emanuele
– sequence: 5
  givenname: Jan
  surname: Svoboda
  fullname: Svoboda, Jan
– sequence: 6
  givenname: Michael M.
  surname: Bronstein
  fullname: Bronstein, Michael M.
BookMark eNpNjL1OwzAURg0qEk1hZGLxCyRcx3_JiAKkSElBiLJWbnwDRqkT2UWCt6cIBqbvSOfoS8jMjx4JuWCQMQblVfXy-JTlwHQmtToiCZO8UCCkFsdkzkDxVJWsnP3jU5LE-A6Qc53DnCxrHHe4D66jN4gTbdAE7_wrHT2tg5neIjXe0tZ414-DjXQdf2zrPvcfAWk7WhxotVrFM3LSmyHi-d8uyPru9rlaps1DfV9dN6nLBdunmoPUUghttUUBPeN9XyprdVHyopd6m1soNHCjLAehrBbbrgPGD5mwh4AvyOXvr0PEzRTczoSvTcEAQJb8Gz40TP0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.576
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 5434
ExternalDocumentID 8100059
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-730575447d7de40f13ff96dd78938f57b2d08703a6d3046d74bcc0133ff4d8f53
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-730575447d7de40f13ff96dd78938f57b2d08703a6d3046d74bcc0133ff4d8f53
PageCount 10
ParticipantIDs ieee_primary_8100059
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.598617
Snippet Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and...
SourceID ieee
SourceType Publisher
StartPage 5425
SubjectTerms Computational modeling
Convolution
Laplace equations
Machine learning
Manifolds
Shape
Three-dimensional displays
Title Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs
URI https://ieeexplore.ieee.org/document/8100059
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwEBZJpk7pI6VvNHSsHDuyJXlOm4SCQyhNyRZkPUpoaofagdJfX0l2nFI6dBOHhkPScXe6u-8D4JYGnBBBUsRSrFFIRYg4ZwLFEkc64owFDvEmmZLJPHxcRIsWuGtmYZRSrvlMeXbpavkyF1v7VdZngcMTaYO2eWbVrFbzn4JNJkPipoIwsOwrrtJJMCJxEO_xNfvDl9mTbeqiXmShRn6wqjinMuqCZKdO1Uvy5m3L1BNfv5Aa_6vvIejtx_fgrHFMR6ClsmPQreNNWFtzYUQ7Soed7ARMxip_tyRbAt4rtYE1_OorzDM4ttjWBeSZhAnPVjpfywK6lgOYrD5tJQJaZrU1HE6nRQ_MRw_PwwmqyRbQyjjxEhlLjywYHpVUqtDXAdY6JlJSE9AwHdF0IH1j25gTaYupkoapECZ-NNtCaTbgU9DJ8kydAchin9m8UAahSbzN1UvBhOZ4kBJf-AKfgxN7VstNhaexrI_p4m_xJTiwd1W1yF6BTvmxVdcmECjTG_cCvgGOmK5V
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBI0qROHGcutAGaqEIt6lY5_kAVJalIKiF-PXaSpggxsEUnD5ad09353b0HwI1nU4wZjg0SI2k4HnMMSgkzfI5c6VJC7ILxJoxwMHUeZ-6sAW7rWRghRNF8Jkz9WWD5PGVr_VTWJXbBJ7IDdlXcd9xyWqt-UUGqlsF-jSH0tP5KgXViZGDf9rcMm93-y_hZt3V5pqvJRn7oqhRhZdAC4WZDZTfJm7nOY5N9_eJq_O-OD0BnO8AHx3VoOgQNkRyBVpVxwsqfM2XaiDpsbG0QDEX6rmW2GLwTYgUrAtZXmCZwqNmtM0gTDkOaLGS65Bksmg5guPjUWATU2mpL2I-irAOmg_tJPzAquQVjocJ4bihfdzUdnsc9LhxL2khKH3PuqZSGSNeLe9xS3o0o5hpO5Z4TM6YySLXM4WoBOgbNJE3ECYDEt4iuDLntqNJbXT5nhEmKejG2mMXQKWjrs5qvSkaNeXVMZ3-br8FeMAlH89FD9HQO9vW9lQ2zF6CZf6zFpUoL8viq-Bu-AeNWsaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Geometric+Deep+Learning+on+Graphs+and+Manifolds+Using+Mixture+Model+CNNs&rft.au=Monti%2C+Federico&rft.au=Boscaini%2C+Davide&rft.au=Masci%2C+Jonathan&rft.au=Rodola%2C+Emanuele&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=5425&rft.epage=5434&rft_id=info:doi/10.1109%2FCVPR.2017.576&rft.externalDocID=8100059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon