A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation

Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 724 - 732
Main Authors Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.85

Cover

Loading…
Abstract Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we present a new benchmark dataset and evaluation methodology for the area of video object segmentation. The dataset, named DAVIS (Densely Annotated VIdeo Segmentation), consists of fifty high quality, Full HD video sequences, spanning multiple occurrences of common video object segmentation challenges such as occlusions, motionblur and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and per-frame ground truth segmentation. In addition, we provide a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics that measure the spatial extent of the segmentation, the accuracy of the silhouette contours and the temporal coherence. The results uncover strengths and weaknesses of current approaches, opening up promising directions for future works.
AbstractList Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we present a new benchmark dataset and evaluation methodology for the area of video object segmentation. The dataset, named DAVIS (Densely Annotated VIdeo Segmentation), consists of fifty high quality, Full HD video sequences, spanning multiple occurrences of common video object segmentation challenges such as occlusions, motionblur and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and per-frame ground truth segmentation. In addition, we provide a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics that measure the spatial extent of the segmentation, the accuracy of the silhouette contours and the temporal coherence. The results uncover strengths and weaknesses of current approaches, opening up promising directions for future works.
Author Perazzi, F.
Van Gool, L.
Pont-Tuset, J.
Gross, M.
McWilliams, B.
Sorkine-Hornung, A.
Author_xml – sequence: 1
  givenname: F.
  surname: Perazzi
  fullname: Perazzi, F.
  organization: ETH Zurich
– sequence: 2
  givenname: J.
  surname: Pont-Tuset
  fullname: Pont-Tuset, J.
  organization: ETH Zurich
– sequence: 3
  givenname: B.
  surname: McWilliams
  fullname: McWilliams, B.
  organization: Disney Research
– sequence: 4
  givenname: L.
  surname: Van Gool
  fullname: Van Gool, L.
  organization: ETH Zurich
– sequence: 5
  givenname: M.
  surname: Gross
  fullname: Gross, M.
  organization: Disney Research
– sequence: 6
  givenname: A.
  surname: Sorkine-Hornung
  fullname: Sorkine-Hornung, A.
  organization: Disney Research
BookMark eNotjslOwzAUAA0CiVJy48bFP5Dil3g9llAWqaiIpdfKsZ_blDRGianUvwcBp7mMRnNOTrrYISGXwCYAzFxXy-eXScFATrQ4IplRGrhUpdYC4JiMgMkylwbMGcmGYcsYAyM1aDMi8ym9wc5tdrb_oLc22QETtZ2ns71tv2xqYkefMG2ij21cH2iIPV02HiNd1Ft0ib7ieodd-jUvyGmw7YDZP8fk_W72Vj3k88X9YzWd503BIeUyeOVqxwttwBUGOAR0SljLXNChFIYL7VQpFIhgvHe1tEZ6WStRey7qohyTq79ug4irz775uT-slNKMC15-A2lBT3o
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.85
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 732
ExternalDocumentID 7780454
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-6fd7cbc42891c29141fec75aa0cf8f359458c735715f9ddcb6a96d6b75bd45b23
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-6fd7cbc42891c29141fec75aa0cf8f359458c735715f9ddcb6a96d6b75bd45b23
PageCount 9
ParticipantIDs ieee_primary_7780454
PublicationCentury 2000
PublicationDate 2016-06
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.5694656
Snippet Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective...
SourceID ieee
SourceType Publisher
StartPage 724
SubjectTerms Algorithm design and analysis
Benchmark testing
Computer vision
Image segmentation
Manuals
Motion segmentation
Object segmentation
Title A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation
URI https://ieeexplore.ieee.org/document/7780454
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5tod0Xe1SEECNKVAg3sk8lhGKwXPz17ralGOPB23ZOm330m5mdbz4ArpCNlW1TEViG4gALhgKpDAusiRDTbck7whOch490MMb3UzKtgOuSC2OMyYrPTOiH2Vu-XqmNT5W1mO-WQ3AVVF3glnO1dvkUTh328PIbuciG8vJFIfZqLGXhO291J6NnX9hFQ6-i_ENYJcOVfh0MtzPKy0kW4SaVofr61azxv1PeB80dgw-OSmw6ABWTHIJ64XLC4kJ_OtNW1WFra4CHG3jrRu9LsV7AO5E6mEuhSDTslY3B4TDTnc4y8tB5vXAy12YFn6RP6sAX87YsGE1JE4z7vdfuICg0F4K5w_I0oFYzJZULSnikYh7hyBrFiBBtZTsWEY5JRzFEWEQs11pJKjjVVDIiNSYyRkeglqwScwygjhDlCLuISQiMlfubCWKldA4jJqgt1Qlo-PWafeRtNWbFUp3-bT4De3678uzHOail6425cP5AKi-zg_ANPCuzXQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsNAEB1xFFCFI4ibLShxiL1XtuSKAiQhgoDooj0BRXEQOA1fz67jOAhR0K2nWu3hNzP7Zh7AMXaJdnUmI8dxEhHJcaS05ZGzMeamrkRDhgLnTpe1HsnNM31egJOyFsZam5PPbC0M87d8M9aTkCo75aFbDiWLsOxxn8bTaq15RkUwjz6i_MY-tmGifFNIgh5LSX0XpxdPvftA7WK1oKP8Q1olR5ZmBTqzOU0JJcPaJFM1_fWrXeN_J70G1XkNH-qV6LQOCzbdgErhdKLiSn9600zXYWbbhPYZOvej15H8GKJLmXmgy5BMDboqW4OjTq48nefkkfd70dObsWN0p0JaBz3Yl1FR05RW4bF51b9oRYXqQvTm0TyLmDNcK-3DEhHrRMQkdlZzKmVdu4bDVBDa0BxTHlMnjNGKScEMU5wqQ6hK8BYspePUbgMyMWYCEx8zSUmI9v8zSZ1S3mUkFNeV3oHNsF6D92ljjUGxVLt_m49gpdXvtAft6-7tHqyGrZtytvZhKfuY2APvHWTqMD8U38l8tqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=A+Benchmark+Dataset+and+Evaluation+Methodology+for+Video+Object+Segmentation&rft.au=Perazzi%2C+F.&rft.au=Pont-Tuset%2C+J.&rft.au=McWilliams%2C+B.&rft.au=Van+Gool%2C+L.&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=724&rft.epage=732&rft_id=info:doi/10.1109%2FCVPR.2016.85&rft.externalDocID=7780454