A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation
Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 724 - 732 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.85 |
Cover
Loading…
Abstract | Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we present a new benchmark dataset and evaluation methodology for the area of video object segmentation. The dataset, named DAVIS (Densely Annotated VIdeo Segmentation), consists of fifty high quality, Full HD video sequences, spanning multiple occurrences of common video object segmentation challenges such as occlusions, motionblur and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and per-frame ground truth segmentation. In addition, we provide a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics that measure the spatial extent of the segmentation, the accuracy of the silhouette contours and the temporal coherence. The results uncover strengths and weaknesses of current approaches, opening up promising directions for future works. |
---|---|
AbstractList | Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective comparisons in many fields. At the same time, legacy datasets may impend the evolution of a field due to saturated algorithm performance and the lack of contemporary, high quality data. In this work we present a new benchmark dataset and evaluation methodology for the area of video object segmentation. The dataset, named DAVIS (Densely Annotated VIdeo Segmentation), consists of fifty high quality, Full HD video sequences, spanning multiple occurrences of common video object segmentation challenges such as occlusions, motionblur and appearance changes. Each video is accompanied by densely annotated, pixel-accurate and per-frame ground truth segmentation. In addition, we provide a comprehensive analysis of several state-of-the-art segmentation approaches using three complementary metrics that measure the spatial extent of the segmentation, the accuracy of the silhouette contours and the temporal coherence. The results uncover strengths and weaknesses of current approaches, opening up promising directions for future works. |
Author | Perazzi, F. Van Gool, L. Pont-Tuset, J. Gross, M. McWilliams, B. Sorkine-Hornung, A. |
Author_xml | – sequence: 1 givenname: F. surname: Perazzi fullname: Perazzi, F. organization: ETH Zurich – sequence: 2 givenname: J. surname: Pont-Tuset fullname: Pont-Tuset, J. organization: ETH Zurich – sequence: 3 givenname: B. surname: McWilliams fullname: McWilliams, B. organization: Disney Research – sequence: 4 givenname: L. surname: Van Gool fullname: Van Gool, L. organization: ETH Zurich – sequence: 5 givenname: M. surname: Gross fullname: Gross, M. organization: Disney Research – sequence: 6 givenname: A. surname: Sorkine-Hornung fullname: Sorkine-Hornung, A. organization: Disney Research |
BookMark | eNotjslOwzAUAA0CiVJy48bFP5Dil3g9llAWqaiIpdfKsZ_blDRGianUvwcBp7mMRnNOTrrYISGXwCYAzFxXy-eXScFATrQ4IplRGrhUpdYC4JiMgMkylwbMGcmGYcsYAyM1aDMi8ym9wc5tdrb_oLc22QETtZ2ns71tv2xqYkefMG2ij21cH2iIPV02HiNd1Ft0ib7ieodd-jUvyGmw7YDZP8fk_W72Vj3k88X9YzWd503BIeUyeOVqxwttwBUGOAR0SljLXNChFIYL7VQpFIhgvHe1tEZ6WStRey7qohyTq79ug4irz775uT-slNKMC15-A2lBT3o |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.85 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 732 |
ExternalDocumentID | 7780454 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-6fd7cbc42891c29141fec75aa0cf8f359458c735715f9ddcb6a96d6b75bd45b23 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:33:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-6fd7cbc42891c29141fec75aa0cf8f359458c735715f9ddcb6a96d6b75bd45b23 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780454 |
PublicationCentury | 2000 |
PublicationDate | 2016-06 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.5694656 |
Snippet | Over the years, datasets and benchmarks have proven their fundamental importance in computer vision research, enabling targeted progress and objective... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 724 |
SubjectTerms | Algorithm design and analysis Benchmark testing Computer vision Image segmentation Manuals Motion segmentation Object segmentation |
Title | A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation |
URI | https://ieeexplore.ieee.org/document/7780454 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx5tod0Xe1SEECNKVAg3sk8lhGKwXPz17ralGOPB23ZOm330m5mdbz4ArpCNlW1TEViG4gALhgKpDAusiRDTbck7whOch490MMb3UzKtgOuSC2OMyYrPTOiH2Vu-XqmNT5W1mO-WQ3AVVF3glnO1dvkUTh328PIbuciG8vJFIfZqLGXhO291J6NnX9hFQ6-i_ENYJcOVfh0MtzPKy0kW4SaVofr61azxv1PeB80dgw-OSmw6ABWTHIJ64XLC4kJ_OtNW1WFra4CHG3jrRu9LsV7AO5E6mEuhSDTslY3B4TDTnc4y8tB5vXAy12YFn6RP6sAX87YsGE1JE4z7vdfuICg0F4K5w_I0oFYzJZULSnikYh7hyBrFiBBtZTsWEY5JRzFEWEQs11pJKjjVVDIiNSYyRkeglqwScwygjhDlCLuISQiMlfubCWKldA4jJqgt1Qlo-PWafeRtNWbFUp3-bT4De3678uzHOail6425cP5AKi-zg_ANPCuzXQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsNAEB1xFFCFI4ibLShxiL1XtuSKAiQhgoDooj0BRXEQOA1fz67jOAhR0K2nWu3hNzP7Zh7AMXaJdnUmI8dxEhHJcaS05ZGzMeamrkRDhgLnTpe1HsnNM31egJOyFsZam5PPbC0M87d8M9aTkCo75aFbDiWLsOxxn8bTaq15RkUwjz6i_MY-tmGifFNIgh5LSX0XpxdPvftA7WK1oKP8Q1olR5ZmBTqzOU0JJcPaJFM1_fWrXeN_J70G1XkNH-qV6LQOCzbdgErhdKLiSn9600zXYWbbhPYZOvej15H8GKJLmXmgy5BMDboqW4OjTq48nefkkfd70dObsWN0p0JaBz3Yl1FR05RW4bF51b9oRYXqQvTm0TyLmDNcK-3DEhHrRMQkdlZzKmVdu4bDVBDa0BxTHlMnjNGKScEMU5wqQ6hK8BYspePUbgMyMWYCEx8zSUmI9v8zSZ1S3mUkFNeV3oHNsF6D92ljjUGxVLt_m49gpdXvtAft6-7tHqyGrZtytvZhKfuY2APvHWTqMD8U38l8tqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=A+Benchmark+Dataset+and+Evaluation+Methodology+for+Video+Object+Segmentation&rft.au=Perazzi%2C+F.&rft.au=Pont-Tuset%2C+J.&rft.au=McWilliams%2C+B.&rft.au=Van+Gool%2C+L.&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=724&rft.epage=732&rft_id=info:doi/10.1109%2FCVPR.2016.85&rft.externalDocID=7780454 |