CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present high-quality density maps. The proposed CSRNet is composed of two major components...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 1091 - 1100
Main Authors Li, Yuhong, Zhang, Xiaofan, Chen, Deming
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present high-quality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations. CSRNet is an easy-trained model because of its pure convolutional structure. We demonstrate CSRNet on four datasets (ShanghaiTech dataset, the UCF_CC_50 dataset, the WorldEXPO'10 dataset, and the UCSD dataset) and we deliver the state-of-the-art performance. In the ShanghaiTech Part_B dataset, CSRNet achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-the-art method. We extend the targeted applications for counting other objects, such as the vehicle in TRANCOS dataset. Results show that CSRNet significantly improves the output quality with 15.4% lower MAE than the previous state-of-the-art approach.
AbstractList We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present high-quality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations. CSRNet is an easy-trained model because of its pure convolutional structure. We demonstrate CSRNet on four datasets (ShanghaiTech dataset, the UCF_CC_50 dataset, the WorldEXPO'10 dataset, and the UCSD dataset) and we deliver the state-of-the-art performance. In the ShanghaiTech Part_B dataset, CSRNet achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-the-art method. We extend the targeted applications for counting other objects, such as the vehicle in TRANCOS dataset. Results show that CSRNet significantly improves the output quality with 15.4% lower MAE than the previous state-of-the-art approach.
Author Zhang, Xiaofan
Li, Yuhong
Chen, Deming
Author_xml – sequence: 1
  givenname: Yuhong
  surname: Li
  fullname: Li, Yuhong
– sequence: 2
  givenname: Xiaofan
  surname: Zhang
  fullname: Zhang, Xiaofan
– sequence: 3
  givenname: Deming
  surname: Chen
  fullname: Chen, Deming
BookMark eNotzLtOwzAUgGGDQKKUzgwsfoGUYzvxhQ2Fq1QV1FIWhsqJT1pDcFDsgvr2UGD6p_87JgehC0jIKYMxY2DOy-fH2ZgD02MAxmGPjIzSrBBaypyD2ScDBlJk0jBzREYxvgIAl1rovBiQl3I-m2K6oFe-tQkdLbvw2bWb5LtgWzrFTf-b9NX1b5E2XU8XwWEfkw3OhxVNa6R3frVut7t1hXGHzGsMGE_IYWPbiKP_Dsni5vqpvMsmD7f35eUk8zxnKZNKq0paJZxwoEDaWoHRhULX2AJVrRpXKaNsgzLXQjRFzevCmcoqzutKcTEkZ3-uR8TlR-_fbb9d_giaMy2-AbqTVb4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00120
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 1100
ExternalDocumentID 8578218
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-6787b6a73d3d0706ac709857edfa5e7c7fdb797afe64833f5c2c5d9ba722cb723
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-6787b6a73d3d0706ac709857edfa5e7c7fdb797afe64833f5c2c5d9ba722cb723
PageCount 10
ParticipantIDs ieee_primary_8578218
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6183226
Snippet We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested...
SourceID ieee
SourceType Publisher
StartPage 1091
SubjectTerms Convolution
Feature extraction
Image analysis
Kernel
Pattern recognition
Task analysis
Training
Title CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
URI https://ieeexplore.ieee.org/document/8578218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0eXx3a37XpFCTGBEBRD4oFsX4ZIgMhior_eme6KxHjwtI-km25nu_PN9JuvhFxxpVNneRQow0wQmcQFSolWEHEVaibi1HKsHe4PeG8c3U_iSYlcb2thrLWefGYbeOrX8s1SbzBV1pSovd6WZVKGwC2v1drmU0IumSxWyPCaQWTDE1mo-bRbSbPzNBwhlwvJk23c33tnOxXvTbpV0v_uR04ieW1sMtXQn78kGv_b0X1S_6nbo8OtRzogJbs4JNUCaNJiGq9r5LnzMBrY7IbezuaANQ2F9u_FN5jOKQp2-INniK8p4Fo63i2CoYAaKTJE5h_Y9MXnTOH5-N-sk3H37rHTC4pdFoIZeO8sAG8lFE8FA2PB_OepFq0EXsAal8ZWaOGMEonwFpWMuViHOjaJSkUYaiVCdkQqi-XCHhOKcIEDgrMaoizhVCIB_0XaoXpSKGN3Qmo4VtNVLqQxLYbp9O_bZ2QPrZXzss5JJXvb2AtAAJm69Kb_AjSvsIE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf9uDRAVu3tvOKElQgBMGQeCDrlyESMDJM9K-37SYS48HTPpIubV_X9-vr7_0KcEG4SLQiocclll4oY-1xTuteSHggMI0SRWzucKdLWsPwbhSNCnC5yoVRSjnymaraW7eXL-diaUNlNWa11322AZvG70d-lq21iqgEhGGW75HZZ2zWNiRmuZ6PX49rjcde37K5LH3Styd8rx2o4vxJswSd75pkNJKX6jLlVfH5S6Txv1XdgcpP5h7qrXzSLhTUbA9KOdRE-Y-8KMNT46HfVekVup5MDdqUyJR_z0dhMkVWssNdHEd8gQyyRcP1NBhkcCOyHJHphy367KKm5vt25qzAsHkzaLS8_JwFb2L8d-oZf0U5SSg25jIzAEkErcemAUrqJFJUUC05jamzKcNYRyIQkYx5QoNAcBrgfSjO5jN1AMgCBmIwnBJmnUU1j5lBgKHQVj8pYJE-hLLtq_FrJqUxzrvp6O_X57DVGnTa4_Zt9_4Ytq3lMpbWCRTTt6U6NXgg5WduGHwBmnezyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=CSRNet%3A+Dilated+Convolutional+Neural+Networks+for+Understanding+the+Highly+Congested+Scenes&rft.au=Li%2C+Yuhong&rft.au=Zhang%2C+Xiaofan&rft.au=Chen%2C+Deming&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1091&rft.epage=1100&rft_id=info:doi/10.1109%2FCVPR.2018.00120&rft.externalDocID=8578218