Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach
We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matri...
Saved in:
Published in | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2233 - 2241 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2017.240 |
Cover
Loading…
Abstract | We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. We further show how one can estimate these probabilities, adapting a recent technique for noise estimation to the multi-class setting, and thus providing an end-to-end framework. Extensive experiments on MNIST, IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images employing a diversity of architectures - stacking dense, convolutional, pooling, dropout, batch normalization, word embedding, LSTM and residual layers - demonstrate the noise robustness of our proposals. Incidentally, we also prove that, when ReLU is the only non-linearity, the loss curvature is immune to class-dependent label noise. |
---|---|
AbstractList | We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. We further show how one can estimate these probabilities, adapting a recent technique for noise estimation to the multi-class setting, and thus providing an end-to-end framework. Extensive experiments on MNIST, IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images employing a diversity of architectures - stacking dense, convolutional, pooling, dropout, batch normalization, word embedding, LSTM and residual layers - demonstrate the noise robustness of our proposals. Incidentally, we also prove that, when ReLU is the only non-linearity, the loss curvature is immune to class-dependent label noise. |
Author | Nock, Richard Patrini, Giorgio Rozza, Alessandro Menon, Aditya Krishna Lizhen Qu |
Author_xml | – sequence: 1 givenname: Giorgio surname: Patrini fullname: Patrini, Giorgio email: Giorgio.Patrini@data61.csiro.au – sequence: 2 givenname: Alessandro surname: Rozza fullname: Rozza, Alessandro email: alessandro.rozza@waynaut.com – sequence: 3 givenname: Aditya Krishna surname: Menon fullname: Menon, Aditya Krishna email: Aditya.Menon@data61.csiro.au – sequence: 4 givenname: Richard surname: Nock fullname: Nock, Richard email: Richard.Nock@data61.csiro.au – sequence: 5 surname: Lizhen Qu fullname: Lizhen Qu email: Lizhen.Qu@data61.csiro.au |
BookMark | eNpNzEtLw0AUBeBRKthWl67czB9IvfPOuAvxCalKUbdlprnR2JoJMynivzegC1ff4Rw4MzLpQoeEnDFYMAb2onx9Wi04MLPgEg7IjCmRa5DKyEMyZaBFpi2zk3_5mMxS-gDgwnCYkuXSbdvujV4h9vQB99HtRoavELeJroLfp4EOgVbO4ziENuElLWgVUqJliBE3Qxs6WvR9DG7zfkKOGrdLePrnnLzcXD-Xd1n1eHtfFlXWcsmGTKscjc8Bam_ASm1R67GzspZeQNNox5VTunGYw8Ya5WxtlB-x2jc1GjEn57-_LSKu-9h-uvi9zsFaw4X4Af0ET0M |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2017.240 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1538604574 9781538604571 |
EISSN | 1063-6919 |
EndPage | 2241 |
ExternalDocumentID | 8099723 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i241t-658e7b800db709469e6665894d4b30ff6a25a56fae80c975a9d75b5a996bfde73 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:33:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-658e7b800db709469e6665894d4b30ff6a25a56fae80c975a9d75b5a996bfde73 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8099723 |
PublicationCentury | 2000 |
PublicationDate | 2017-07 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0003211698 |
Score | 2.5869832 |
Snippet | We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2233 |
SubjectTerms | Computer architecture Computer vision Neural networks Noise measurement Robustness Training |
Title | Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach |
URI | https://ieeexplore.ieee.org/document/8099723 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7dGFvXrt4ISohhhhAx3Ei7vSZEw4jbLv71tt0Yxnjw1OXt0nRd3vd-fO9D6C4FLx36nnIoqMQhvgyciDNw_ATIECIRADds5PiFTpfkeRWuWui-4cIAgG0-A9c82lp-miWlSZUNIkvzDNqorQO3iqvV5FMCHclQ3lQQfKO-YiudNHAoH_LDfM3B-G2-ME1dzPVNzuOHqop1KpMuivfbqXpJ3t2ykG7y9WtS43_3e4z6B_oenjeO6QS1YHuKujXexPXfnGvTXtJhb-uhOLbqVPgRYIfN4A7xoRfbKZ7jRSbLvMBFhmdCgn6RbXJ4wCM8054Wj43Oh2VJ4FE9qLyPlpOn1_HUqRUXnI325IWj4QgwqTFkKpmO-ygHHd2EEScpkYGnFBV-KEKqBERewlkoeMpCqRdOpUqBBWeos822cI6wFF4yTCKldEBHNI4QCQ-AKCKVBlwpYxeoZw5svauGaqzrs7r823yFjswHq_pkr1Gn-CzhRqOBQt7aa_ANNaexyA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Y5_t6o2gBHUjhIDhRtrtNSEaRty4-NfblgHGePDU5e3SdF3e73383g-huwyczPUcaRGQqRV4wrciRsHyUghciLgPTLORkwHpT4KXaTitofstFwYATPMZ2PrR1PKzPF3pVFk7MjRPfw_tK78fumu21jaj4qtYhrBtDcHT-ium1kl8izCX7SZstrtvw5Fu66K2p7MeP3RVjFvpNVCy2dC6m-TdXpXCTr9-zWr8746PUGtH4MPDrWs6RjVYnKBGhThx9T8XyrQRddjYmihJjD4VfgRYYj26g3-oxfSKF3iUi1VR4jLHMRegXuTzAh5wB8fK1-KuVvowPAncqUaVt9Ck9zTu9q1Kc8GaK19eWgqQABUKRWaCqsiPMFDxTRixIAuE70hJuBfykEgOkZMyGnKW0VCohREhM6D-Kaov8gWcISy4k7ppJKUK6QKFJHjKfAhkIKSCXBml56ipD2y2XI_VmFVndfG3-RYd9MdJPIufB6-X6FB_vHXX7BWql58ruFbYoBQ35kp8A65_tRE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Making+Deep+Neural+Networks+Robust+to+Label+Noise%3A+A+Loss+Correction+Approach&rft.au=Patrini%2C+Giorgio&rft.au=Rozza%2C+Alessandro&rft.au=Menon%2C+Aditya+Krishna&rft.au=Nock%2C+Richard&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2233&rft.epage=2241&rft_id=info:doi/10.1109%2FCVPR.2017.240&rft.externalDocID=8099723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |