Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach

We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matri...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2233 - 2241
Main Authors Patrini, Giorgio, Rozza, Alessandro, Menon, Aditya Krishna, Nock, Richard, Lizhen Qu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2017.240

Cover

Loading…
Abstract We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. We further show how one can estimate these probabilities, adapting a recent technique for noise estimation to the multi-class setting, and thus providing an end-to-end framework. Extensive experiments on MNIST, IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images employing a diversity of architectures - stacking dense, convolutional, pooling, dropout, batch normalization, word embedding, LSTM and residual layers - demonstrate the noise robustness of our proposals. Incidentally, we also prove that, when ReLU is the only non-linearity, the loss curvature is immune to class-dependent label noise.
AbstractList We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. We further show how one can estimate these probabilities, adapting a recent technique for noise estimation to the multi-class setting, and thus providing an end-to-end framework. Extensive experiments on MNIST, IMDB, CIFAR-10, CIFAR-100 and a large scale dataset of clothing images employing a diversity of architectures - stacking dense, convolutional, pooling, dropout, batch normalization, word embedding, LSTM and residual layers - demonstrate the noise robustness of our proposals. Incidentally, we also prove that, when ReLU is the only non-linearity, the loss curvature is immune to class-dependent label noise.
Author Nock, Richard
Patrini, Giorgio
Rozza, Alessandro
Menon, Aditya Krishna
Lizhen Qu
Author_xml – sequence: 1
  givenname: Giorgio
  surname: Patrini
  fullname: Patrini, Giorgio
  email: Giorgio.Patrini@data61.csiro.au
– sequence: 2
  givenname: Alessandro
  surname: Rozza
  fullname: Rozza, Alessandro
  email: alessandro.rozza@waynaut.com
– sequence: 3
  givenname: Aditya Krishna
  surname: Menon
  fullname: Menon, Aditya Krishna
  email: Aditya.Menon@data61.csiro.au
– sequence: 4
  givenname: Richard
  surname: Nock
  fullname: Nock, Richard
  email: Richard.Nock@data61.csiro.au
– sequence: 5
  surname: Lizhen Qu
  fullname: Lizhen Qu
  email: Lizhen.Qu@data61.csiro.au
BookMark eNpNzEtLw0AUBeBRKthWl67czB9IvfPOuAvxCalKUbdlprnR2JoJMynivzegC1ff4Rw4MzLpQoeEnDFYMAb2onx9Wi04MLPgEg7IjCmRa5DKyEMyZaBFpi2zk3_5mMxS-gDgwnCYkuXSbdvujV4h9vQB99HtRoavELeJroLfp4EOgVbO4ziENuElLWgVUqJliBE3Qxs6WvR9DG7zfkKOGrdLePrnnLzcXD-Xd1n1eHtfFlXWcsmGTKscjc8Bam_ASm1R67GzspZeQNNox5VTunGYw8Ya5WxtlB-x2jc1GjEn57-_LSKu-9h-uvi9zsFaw4X4Af0ET0M
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.240
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 2241
ExternalDocumentID 8099723
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-658e7b800db709469e6665894d4b30ff6a25a56fae80c975a9d75b5a996bfde73
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-658e7b800db709469e6665894d4b30ff6a25a56fae80c975a9d75b5a996bfde73
PageCount 9
ParticipantIDs ieee_primary_8099723
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.5869832
Snippet We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose...
SourceID ieee
SourceType Publisher
StartPage 2233
SubjectTerms Computer architecture
Computer vision
Neural networks
Noise measurement
Robustness
Training
Title Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach
URI https://ieeexplore.ieee.org/document/8099723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7dGFvXrt4ISohhhhAx3Ei7vSZEw4jbLv71tt0Yxnjw1OXt0nRd3vd-fO9D6C4FLx36nnIoqMQhvgyciDNw_ATIECIRADds5PiFTpfkeRWuWui-4cIAgG0-A9c82lp-miWlSZUNIkvzDNqorQO3iqvV5FMCHclQ3lQQfKO-YiudNHAoH_LDfM3B-G2-ME1dzPVNzuOHqop1KpMuivfbqXpJ3t2ykG7y9WtS43_3e4z6B_oenjeO6QS1YHuKujXexPXfnGvTXtJhb-uhOLbqVPgRYIfN4A7xoRfbKZ7jRSbLvMBFhmdCgn6RbXJ4wCM8054Wj43Oh2VJ4FE9qLyPlpOn1_HUqRUXnI325IWj4QgwqTFkKpmO-ygHHd2EEScpkYGnFBV-KEKqBERewlkoeMpCqRdOpUqBBWeos822cI6wFF4yTCKldEBHNI4QCQ-AKCKVBlwpYxeoZw5svauGaqzrs7r823yFjswHq_pkr1Gn-CzhRqOBQt7aa_ANNaexyA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Y5_t6o2gBHUjhIDhRtrtNSEaRty4-NfblgHGePDU5e3SdF3e73383g-huwyczPUcaRGQqRV4wrciRsHyUghciLgPTLORkwHpT4KXaTitofstFwYATPMZ2PrR1PKzPF3pVFk7MjRPfw_tK78fumu21jaj4qtYhrBtDcHT-ium1kl8izCX7SZstrtvw5Fu66K2p7MeP3RVjFvpNVCy2dC6m-TdXpXCTr9-zWr8746PUGtH4MPDrWs6RjVYnKBGhThx9T8XyrQRddjYmihJjD4VfgRYYj26g3-oxfSKF3iUi1VR4jLHMRegXuTzAh5wB8fK1-KuVvowPAncqUaVt9Ck9zTu9q1Kc8GaK19eWgqQABUKRWaCqsiPMFDxTRixIAuE70hJuBfykEgOkZMyGnKW0VCohREhM6D-Kaov8gWcISy4k7ppJKUK6QKFJHjKfAhkIKSCXBml56ipD2y2XI_VmFVndfG3-RYd9MdJPIufB6-X6FB_vHXX7BWql58ruFbYoBQ35kp8A65_tRE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Making+Deep+Neural+Networks+Robust+to+Label+Noise%3A+A+Loss+Correction+Approach&rft.au=Patrini%2C+Giorgio&rft.au=Rozza%2C+Alessandro&rft.au=Menon%2C+Aditya+Krishna&rft.au=Nock%2C+Richard&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2233&rft.epage=2241&rft_id=info:doi/10.1109%2FCVPR.2017.240&rft.externalDocID=8099723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon