Solar generation prediction using the ARMA model in a laboratory-level micro-grid
The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation o...
Saved in:
Published in | Smart Grid Communications pp. 528 - 533 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467309103 1467309109 |
DOI | 10.1109/SmartGridComm.2012.6486039 |
Cover
Loading…
Abstract | The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration. |
---|---|
AbstractList | The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration. |
Author | Rui Huang Tiana Huang Gadh, R. Na Li |
Author_xml | – sequence: 1 surname: Rui Huang fullname: Rui Huang organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA – sequence: 2 surname: Tiana Huang fullname: Tiana Huang organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA – sequence: 3 givenname: R. surname: Gadh fullname: Gadh, R. organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA – sequence: 4 surname: Na Li fullname: Na Li organization: Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA |
BookMark | eNotkEFPhDAQhWvURHflF3hpvIOdtrRwJERXkzVGV88bSgesAbopaLL_folyevNevkxm3opcDH5AQu6AJQAsv9_1VZg2wdnS933CGfBEyUwxkZ-RFUilBctZnp6TKNfZ4oGJKxKN4zdjDIBLocU1edv5rgq0xQFDNTk_0ENA6-q_8Wd0Q0unL6TF-0tBe2-xo26gFe0q42feh2Pc4e-c9q4OPm7ni27IZVN1I0aLrsnn48NH-RRvXzfPZbGNHZcwxQqMsU1mwHJr0kxho5FLhEbLrLZ6_rJWmdZgawXCzIQRjbUsRcZrlFyLNbn93-sQcX8Ibq7kuF9aECc3SlZ4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SmartGridComm.2012.6486039 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467309095 9781467309097 |
EndPage | 533 |
ExternalDocumentID | 6486039 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i241t-61bbdf8b1d2db586ef7e24e1f748cd7110c68771dc613bb58b3fdd05e02ce4273 |
IEDL.DBID | RIE |
ISBN | 9781467309103 1467309109 |
IngestDate | Wed Aug 27 04:36:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-61bbdf8b1d2db586ef7e24e1f748cd7110c68771dc613bb58b3fdd05e02ce4273 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6486039 |
PublicationCentury | 2000 |
PublicationDate | 2012-11 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11 |
PublicationDecade | 2010 |
PublicationTitle | Smart Grid Communications |
PublicationTitleAbbrev | SmartGridComm |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001124373 |
Score | 1.9319651 |
Snippet | The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 528 |
SubjectTerms | Data models Forecasting Laboratories Mathematical model Predictive models Satellites Solar radiation |
Title | Solar generation prediction using the ARMA model in a laboratory-level micro-grid |
URI | https://ieeexplore.ieee.org/document/6486039 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjzaQrvbdnskRiQmGBVJuJHu7iwhSiFNOeivd3ZbIBoP3raPNN2ZSeax3zdDyI1mhhkeZ55Sqa1WpeAJ4MrLRCQBAhFH3LKRR0_xcMIfp9G0QW53XBgAcOAz8O3SneXrldrYUlk3thOTWNokTTSziqu1r6cEtrUec9ytGM0W3WC6belUX7O66Sg-6Y6XqJmHYqEtD8MivEK__vqPMSvOywwOyWj7fxW45N3flNJXX79aN_53A0eks-fz0eedpzomDcjb5GVss1o6d32nrXrourCnNm5p4fBzisEh7b-O-tTNy6GLnGa0tppV8el9WMARXVpInzfHTXbIZHD_djf06gEL3gIdd4lpo5TaCBnoUMtIxGASCDkEJuFC6QQFpWKRJIFW6PQlviGZ0boXQS9UwDHwOSGtfJXDKaEqzGQImG5owbgRPFVMGi0zDOCDrJfAGWlbcczWVQ-NWS2J879vX5ADq5KK83dJWmWxgSt0_qW8dlr_BjB1rQ4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DogK3d1h2JEVEZUYGEG1nbV0KUQZZx0L_ethsQjQdv3UeW9b2XvI_-fu8hdCOJIooGiSNEZKpVETgMqHAS5nMAlwU-NWzkuB90R_Rp7I8r6HbDhQEACz6Dhlnas3y5ECtTKmsGZmISiXbQrvb71C_YWtuKimua6xHL3gq04WpHGK2bOpXXpGw7qp80B3Otm4dsJg0Tw2C8vEb5_R-DVqyf6RygeP2HBbzkvbHKeUN8_Wre-N8tHKL6ltGHXza-6ghVIK2h14HJa_HUdp42CsLLzJzb2KUBxE-xDg9x-y1uYzsxB89SnODSbhbZp_NhIEd4bkB9zlRvso5GnfvhXdcpRyw4M-26c504ci4V4670JPdZACoEj4KrQsqEDLWgRMDC0JVCu32u3-BESdnyoeUJoDr0OUbVdJHCCcLCS7gHOuGQjFDFaCQIV5InOoR3k1YIp6hmxDFZFl00JqUkzv6-fY32usO4N-k99p_P0b5RT8EAvEDVPFvBpQ4Fcn5lLeAbcq2wWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Smart+Grid+Communications&rft.atitle=Solar+generation+prediction+using+the+ARMA+model+in+a+laboratory-level+micro-grid&rft.au=Rui+Huang&rft.au=Tiana+Huang&rft.au=Gadh%2C+R.&rft.au=Na+Li&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467309103&rft.spage=528&rft.epage=533&rft_id=info:doi/10.1109%2FSmartGridComm.2012.6486039&rft.externalDocID=6486039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/sc.gif&client=summon&freeimage=true |