Solar generation prediction using the ARMA model in a laboratory-level micro-grid

The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation o...

Full description

Saved in:
Bibliographic Details
Published inSmart Grid Communications pp. 528 - 533
Main Authors Rui Huang, Tiana Huang, Gadh, R., Na Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2012
Subjects
Online AccessGet full text
ISBN9781467309103
1467309109
DOI10.1109/SmartGridComm.2012.6486039

Cover

Loading…
Abstract The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration.
AbstractList The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration.
Author Rui Huang
Tiana Huang
Gadh, R.
Na Li
Author_xml – sequence: 1
  surname: Rui Huang
  fullname: Rui Huang
  organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA
– sequence: 2
  surname: Tiana Huang
  fullname: Tiana Huang
  organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA
– sequence: 3
  givenname: R.
  surname: Gadh
  fullname: Gadh, R.
  organization: Smart Grid Energy Res. Center, Univ. of California, Los Angeles, Los Angeles, CA, USA
– sequence: 4
  surname: Na Li
  fullname: Na Li
  organization: Control & Dynamical Syst., California Inst. of Technol., Pasadena, CA, USA
BookMark eNotkEFPhDAQhWvURHflF3hpvIOdtrRwJERXkzVGV88bSgesAbopaLL_folyevNevkxm3opcDH5AQu6AJQAsv9_1VZg2wdnS933CGfBEyUwxkZ-RFUilBctZnp6TKNfZ4oGJKxKN4zdjDIBLocU1edv5rgq0xQFDNTk_0ENA6-q_8Wd0Q0unL6TF-0tBe2-xo26gFe0q42feh2Pc4e-c9q4OPm7ni27IZVN1I0aLrsnn48NH-RRvXzfPZbGNHZcwxQqMsU1mwHJr0kxho5FLhEbLrLZ6_rJWmdZgawXCzIQRjbUsRcZrlFyLNbn93-sQcX8Ibq7kuF9aECc3SlZ4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SmartGridComm.2012.6486039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467309095
9781467309097
EndPage 533
ExternalDocumentID 6486039
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-61bbdf8b1d2db586ef7e24e1f748cd7110c68771dc613bb58b3fdd05e02ce4273
IEDL.DBID RIE
ISBN 9781467309103
1467309109
IngestDate Wed Aug 27 04:36:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-61bbdf8b1d2db586ef7e24e1f748cd7110c68771dc613bb58b3fdd05e02ce4273
PageCount 6
ParticipantIDs ieee_primary_6486039
PublicationCentury 2000
PublicationDate 2012-11
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11
PublicationDecade 2010
PublicationTitle Smart Grid Communications
PublicationTitleAbbrev SmartGridComm
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001124373
Score 1.9319651
Snippet The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy...
SourceID ieee
SourceType Publisher
StartPage 528
SubjectTerms Data models
Forecasting
Laboratories
Mathematical model
Predictive models
Satellites
Solar radiation
Title Solar generation prediction using the ARMA model in a laboratory-level micro-grid
URI https://ieeexplore.ieee.org/document/6486039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjzaQrvbdnskRiQmGBVJuJHu7iwhSiFNOeivd3ZbIBoP3raPNN2ZSeax3zdDyI1mhhkeZ55Sqa1WpeAJ4MrLRCQBAhFH3LKRR0_xcMIfp9G0QW53XBgAcOAz8O3SneXrldrYUlk3thOTWNokTTSziqu1r6cEtrUec9ytGM0W3WC6belUX7O66Sg-6Y6XqJmHYqEtD8MivEK__vqPMSvOywwOyWj7fxW45N3flNJXX79aN_53A0eks-fz0eedpzomDcjb5GVss1o6d32nrXrourCnNm5p4fBzisEh7b-O-tTNy6GLnGa0tppV8el9WMARXVpInzfHTXbIZHD_djf06gEL3gIdd4lpo5TaCBnoUMtIxGASCDkEJuFC6QQFpWKRJIFW6PQlviGZ0boXQS9UwDHwOSGtfJXDKaEqzGQImG5owbgRPFVMGi0zDOCDrJfAGWlbcczWVQ-NWS2J879vX5ADq5KK83dJWmWxgSt0_qW8dlr_BjB1rQ4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DogK3d1h2JEVEZUYGEG1nbV0KUQZZx0L_ethsQjQdv3UeW9b2XvI_-fu8hdCOJIooGiSNEZKpVETgMqHAS5nMAlwU-NWzkuB90R_Rp7I8r6HbDhQEACz6Dhlnas3y5ECtTKmsGZmISiXbQrvb71C_YWtuKimua6xHL3gq04WpHGK2bOpXXpGw7qp80B3Otm4dsJg0Tw2C8vEb5_R-DVqyf6RygeP2HBbzkvbHKeUN8_Wre-N8tHKL6ltGHXza-6ghVIK2h14HJa_HUdp42CsLLzJzb2KUBxE-xDg9x-y1uYzsxB89SnODSbhbZp_NhIEd4bkB9zlRvso5GnfvhXdcpRyw4M-26c504ci4V4670JPdZACoEj4KrQsqEDLWgRMDC0JVCu32u3-BESdnyoeUJoDr0OUbVdJHCCcLCS7gHOuGQjFDFaCQIV5InOoR3k1YIp6hmxDFZFl00JqUkzv6-fY32usO4N-k99p_P0b5RT8EAvEDVPFvBpQ4Fcn5lLeAbcq2wWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Smart+Grid+Communications&rft.atitle=Solar+generation+prediction+using+the+ARMA+model+in+a+laboratory-level+micro-grid&rft.au=Rui+Huang&rft.au=Tiana+Huang&rft.au=Gadh%2C+R.&rft.au=Na+Li&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467309103&rft.spage=528&rft.epage=533&rft_id=info:doi/10.1109%2FSmartGridComm.2012.6486039&rft.externalDocID=6486039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467309103/sc.gif&client=summon&freeimage=true