LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass an...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8981 - 8989 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at github.com/twhui/LiteFlowNet. |
---|---|
AbstractList | FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at github.com/twhui/LiteFlowNet. |
Author | Loy, Chen Change Tang, Xiaoou Hui, Tak-Wai |
Author_xml | – sequence: 1 givenname: Tak-Wai surname: Hui fullname: Hui, Tak-Wai email: twhui@ie.cuhk.edu.hk organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 2 givenname: Xiaoou surname: Tang fullname: Tang, Xiaoou email: xtang@ie.cuhk.edu.hk organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 3 givenname: Chen Change surname: Loy fullname: Loy, Chen Change email: ccloy@ie.cuhk.edu.hk organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China |
BookMark | eNotT8lOwzAUNAgkSumZAxf_QMJ7tuOFWxW1gBS1iO1amcQGQ4irxKXi72mBy4w0mkVzSo662DlCzhFyRDCX5fPdfc4AdQ5guDwgE6M0FlxLKRiYQzJCkDyTBs0JmQzDOwAwqbkWxYg8VCG5eRu3C5eu6JRW4fUtbd0eaRm7r9huUoidbenCbfpfStvYf1Afe7pcp1DvtH2ezoYUPu3efEaOvW0HN_nnMXmazx7Lm6xaXt-W0yoLTGDKJCpQVlspUHvuoUYQANowXzS8ZoapWpqaY2O9bxCFclLbAl52J02hVMPH5OKvNzjnVut-N99_r3ShDHDBfwCLgVGU |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00936 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 8989 |
ExternalDocumentID | 8579034 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-61707a8a6418f3f0c10400892f5d3c2927c69c31daffd1147e68a50b0939577d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:26:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-61707a8a6418f3f0c10400892f5d3c2927c69c31daffd1147e68a50b0939577d3 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8579034 |
PublicationCentury | 2000 |
PublicationDate | 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5973613 |
Snippet | FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8981 |
SubjectTerms | Adaptive optics Convolution Estimation Feature extraction Optical fiber networks Optical filters Optical imaging |
Title | LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation |
URI | https://ieeexplore.ieee.org/document/8579034 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0sK1bf3gzBEKMIFEx3MjWtYmRMKJDEv96-7qJxnjwtK3JluZ17et7_b7vAVzYsMckaUw9I6LQixSjnlCh8SgKwUgmtXTl3kZjNpxGN7N4VoPLLRdGa-3AZ7qDt-4sP8vVGlNlXRFz6dOoDnUbuJVcrW0-JWSCiuqEDJ-pjWyYFJWaT-DLbu9pco9YLgRPSpRk_lFOxXmTQRNGX_0oQSQvnXWRdtTHL4nG_3Z0F9rfvD0y2XqkPajp5T40q40mqabxWwseUCpjsMg3Y11ckWtyixH6xiVJif3Ue_U7JguC2h3u4sDixO5wyd3Kpb8Jvk_6doUoyY9tmA76j72hV1VX8J6t1y6QG-jzRCQsCoShxlcBzmchQxNnVIUy5IpJRYMsMSazURPXTCSxn1rbyZjzjB5AY5kv9SEQaZKIh4wqnmZ2DfCFDrQJjJKBUrHW8ghaaKP5qhTQmFfmOf67-QR2cJRKPNYpNIrXtT6znr9Iz92QfwI9sawL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf9uDRwbquXevNEAgqIFEw3MjWtYmRANEhiX-9bTfRGA-e1jVZ07yufR_9vd8DuDBuj44TSjzNw8ALJSMel4H2iCWCEUwo4cq99fqsMwpvx3Rcgst1LoxSyoHPVN023V1-OpdLGyprcBoJn4QbsGn0PsV5ttY6ohIwTnhxR2bfifFtmOAFnw_2RaP5NHiwaC4LnxSWlPlHQRWnT9oV6H3NJIeRvNSXWVKXH79IGv871R2ofWfuocFaJ-1CSc32oFKYmqjYyG9VeLRkGe3pfNVX2RW6Rl3ro69cmBSZod6LHzKeIsve4R4OLo6MjYvuFy4Ajuz3qGXOiDz9sQajdmvY7HhFfQXv2ejtzGYH-lHMYxZiron2JbY7motA05TIQASRZEISnMZap8ZvihTjMfUTIztBoygl-1CezWfqAJDQcRgFjMgoSc0p4HOFlcZaCiwlVUocQtXKaLLIKTQmhXiO_u4-h63OsNeddG_6d8ewbVcsR2edQDl7XapTYwdkyZlb_k9nx69U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=LiteFlowNet%3A+A+Lightweight+Convolutional+Neural+Network+for+Optical+Flow+Estimation&rft.au=Hui%2C+Tak-Wai&rft.au=Tang%2C+Xiaoou&rft.au=Loy%2C+Chen+Change&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8981&rft.epage=8989&rft_id=info:doi/10.1109%2FCVPR.2018.00936&rft.externalDocID=8579034 |