LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation

FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass an...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8981 - 8989
Main Authors Hui, Tak-Wai, Tang, Xiaoou, Loy, Chen Change
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at github.com/twhui/LiteFlowNet.
AbstractList FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that attains performance on par with FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at github.com/twhui/LiteFlowNet.
Author Loy, Chen Change
Tang, Xiaoou
Hui, Tak-Wai
Author_xml – sequence: 1
  givenname: Tak-Wai
  surname: Hui
  fullname: Hui, Tak-Wai
  email: twhui@ie.cuhk.edu.hk
  organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Xiaoou
  surname: Tang
  fullname: Tang, Xiaoou
  email: xtang@ie.cuhk.edu.hk
  organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Chen Change
  surname: Loy
  fullname: Loy, Chen Change
  email: ccloy@ie.cuhk.edu.hk
  organization: SenseTime Joint Lab., Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNotT8lOwzAUNAgkSumZAxf_QMJ7tuOFWxW1gBS1iO1amcQGQ4irxKXi72mBy4w0mkVzSo662DlCzhFyRDCX5fPdfc4AdQ5guDwgE6M0FlxLKRiYQzJCkDyTBs0JmQzDOwAwqbkWxYg8VCG5eRu3C5eu6JRW4fUtbd0eaRm7r9huUoidbenCbfpfStvYf1Afe7pcp1DvtH2ezoYUPu3efEaOvW0HN_nnMXmazx7Lm6xaXt-W0yoLTGDKJCpQVlspUHvuoUYQANowXzS8ZoapWpqaY2O9bxCFclLbAl52J02hVMPH5OKvNzjnVut-N99_r3ShDHDBfwCLgVGU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 8989
ExternalDocumentID 8579034
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-61707a8a6418f3f0c10400892f5d3c2927c69c31daffd1147e68a50b0939577d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:26:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-61707a8a6418f3f0c10400892f5d3c2927c69c31daffd1147e68a50b0939577d3
PageCount 9
ParticipantIDs ieee_primary_8579034
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5973613
Snippet FlowNet2 [14], the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow...
SourceID ieee
SourceType Publisher
StartPage 8981
SubjectTerms Adaptive optics
Convolution
Estimation
Feature extraction
Optical fiber networks
Optical filters
Optical imaging
Title LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
URI https://ieeexplore.ieee.org/document/8579034
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0sK1bf3gzBEKMIFEx3MjWtYmRMKJDEv96-7qJxnjwtK3JluZ17et7_b7vAVzYsMckaUw9I6LQixSjnlCh8SgKwUgmtXTl3kZjNpxGN7N4VoPLLRdGa-3AZ7qDt-4sP8vVGlNlXRFz6dOoDnUbuJVcrW0-JWSCiuqEDJ-pjWyYFJWaT-DLbu9pco9YLgRPSpRk_lFOxXmTQRNGX_0oQSQvnXWRdtTHL4nG_3Z0F9rfvD0y2XqkPajp5T40q40mqabxWwseUCpjsMg3Y11ckWtyixH6xiVJif3Ue_U7JguC2h3u4sDixO5wyd3Kpb8Jvk_6doUoyY9tmA76j72hV1VX8J6t1y6QG-jzRCQsCoShxlcBzmchQxNnVIUy5IpJRYMsMSazURPXTCSxn1rbyZjzjB5AY5kv9SEQaZKIh4wqnmZ2DfCFDrQJjJKBUrHW8ghaaKP5qhTQmFfmOf67-QR2cJRKPNYpNIrXtT6znr9Iz92QfwI9sawL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf9uDRwbquXevNEAgqIFEw3MjWtYmRANEhiX-9bTfRGA-e1jVZ07yufR_9vd8DuDBuj44TSjzNw8ALJSMel4H2iCWCEUwo4cq99fqsMwpvx3Rcgst1LoxSyoHPVN023V1-OpdLGyprcBoJn4QbsGn0PsV5ttY6ohIwTnhxR2bfifFtmOAFnw_2RaP5NHiwaC4LnxSWlPlHQRWnT9oV6H3NJIeRvNSXWVKXH79IGv871R2ofWfuocFaJ-1CSc32oFKYmqjYyG9VeLRkGe3pfNVX2RW6Rl3ro69cmBSZod6LHzKeIsve4R4OLo6MjYvuFy4Ajuz3qGXOiDz9sQajdmvY7HhFfQXv2ejtzGYH-lHMYxZiron2JbY7motA05TIQASRZEISnMZap8ZvihTjMfUTIztBoygl-1CezWfqAJDQcRgFjMgoSc0p4HOFlcZaCiwlVUocQtXKaLLIKTQmhXiO_u4-h63OsNeddG_6d8ewbVcsR2edQDl7XapTYwdkyZlb_k9nx69U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=LiteFlowNet%3A+A+Lightweight+Convolutional+Neural+Network+for+Optical+Flow+Estimation&rft.au=Hui%2C+Tak-Wai&rft.au=Tang%2C+Xiaoou&rft.au=Loy%2C+Chen+Change&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8981&rft.epage=8989&rft_id=info:doi/10.1109%2FCVPR.2018.00936&rft.externalDocID=8579034