The iNaturalist Species Classification and Detection Dataset

Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challe...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8769 - 8778
Main Authors Van Horn, Grant, Mac Aodha, Oisin, Song, Yang, Cui, Yin, Sun, Chen, Shepard, Alex, Adam, Hartwig, Perona, Pietro, Belongie, Serge
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
AbstractList Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
Author Sun, Chen
Cui, Yin
Adam, Hartwig
Perona, Pietro
Van Horn, Grant
Mac Aodha, Oisin
Belongie, Serge
Shepard, Alex
Song, Yang
Author_xml – sequence: 1
  givenname: Grant
  surname: Van Horn
  fullname: Van Horn, Grant
  organization: Caltech
– sequence: 2
  givenname: Oisin
  surname: Mac Aodha
  fullname: Mac Aodha, Oisin
  organization: Caltech
– sequence: 3
  givenname: Yang
  surname: Song
  fullname: Song, Yang
  organization: Google
– sequence: 4
  givenname: Yin
  surname: Cui
  fullname: Cui, Yin
  organization: Cornell Tech
– sequence: 5
  givenname: Chen
  surname: Sun
  fullname: Sun, Chen
  organization: Google
– sequence: 6
  givenname: Alex
  surname: Shepard
  fullname: Shepard, Alex
  organization: iNaturalist
– sequence: 7
  givenname: Hartwig
  surname: Adam
  fullname: Adam, Hartwig
  organization: Google
– sequence: 8
  givenname: Pietro
  surname: Perona
  fullname: Perona, Pietro
  organization: Caltech
– sequence: 9
  givenname: Serge
  surname: Belongie
  fullname: Belongie, Serge
  organization: Cornell Tech
BookMark eNotjMtOwzAQAA0CiVJy5sAlP5CyXjt-SFxQykuqAEHhWm2StTAKaRWbA38PAk6jOcwci4NxO7IQpxIWUoI_b14fnxYI0i0AvNR7ovDWyVo5YzSC3xczCUZVxkt_JIqU3gEAjVNO1zNxsX7jMt5T_pxoiCmXzzvuIqeyGSilGGJHOW7Hksa-XHLm7teWlClxPhGHgYbExT_n4uX6at3cVquHm7vmclVF1DJXBqwB7zH41lvsgHtuHbngLLZKaosGkKWmwF2LIWjfI9Q9GiL8CWql5uLs7xuZebOb4gdNXxtXWw8S1TeFu0nM
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00914
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 8778
ExternalDocumentID 8579012
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-60760992f9b972c0edeb8a8f872b31472602e14afecb2ff49d205d26aa2b97533
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-60760992f9b972c0edeb8a8f872b31472602e14afecb2ff49d205d26aa2b97533
PageCount 10
ParticipantIDs ieee_primary_8579012
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6194432
Snippet Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural...
SourceID ieee
SourceType Publisher
StartPage 8769
SubjectTerms Biodiversity
Computational modeling
Computer vision
Dogs
Face
Observers
Training
Title The iNaturalist Species Classification and Detection Dataset
URI https://ieeexplore.ieee.org/document/8579012
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXi025qm-QHeNscQNoY42W0kTQJD6MSlF_96X9I6RTx4a3sKeU2-fHnf-x5Ct4VwzNBcJkwARaGKkkQLnSZcckdNwYiLXnqzOZsu6eMqX7XQ3b4WxlobxWe2Hx5jLt9siypclQ1EzgG-YMM9AOJW12rt71MIE5loMmThPQNmw6Ro3HzSoRyMXhZPQcsVxJMyVO38aKcS0WTSQbOvcdQiktd-5XW_-Phl0fjfgR6h3nfdHl7sEekYtWx5gjrNQRM3y3jXRffwc-DNXEXPDYgzjl3o7Q7HFplBPBTjhVVp8Nj6qNYq8Vh5gDzfQ8vJw_NomjRtFJINwLNPWEi-SUmc1JKTYmiN1UIJJzjRWUo5MBpiU6qcLTRxEBtDhrkhTCmiQ9ltdora5ba0ZwhLTSVTwNEA6ClXSihYvnAEEUCqpHXkHHXDZKzfaqeMdTMPF39_vkSHIRy18OoKtf17Za8B4r2-ibH9BPxio2I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_24NHB6zrujbxhhJUIMSA4UbarU2IyTAyLv71vnYTjfHgbdup6bf26-v7vvcArlNhecZiGXCBIQpTjAZa6DBIZGJZlnJqfS290ZgPZuxxHs9rcLP1whhjvPjMtN2jz-Vnq3Tjrso6Ik6QvnDD3UHej8PSrbW9UaFcRKLKkbn3CGMbLkVVzyfsyk7vZfLs1FxOPimdb-dHQxXPJ_0GjL5GUspIXtubQrfTj19FGv871H1ofTv3yGTLSQdQM_khNKqjJqkW8roJt_h7kOVY-aobiDTxfejNmvgmmU4-5BEjKs_InSm8Xisnd6pA0itaMOvfT3uDoGqkECyRoIuAu_SblNRKLROadk1mtFDCioTqKGQJxjTUhExZk2pqEZ2MduOMcqWodsbb6Ajq-So3x0CkZpIrjNKQ6lmilFC4gPEQIjCsksbSE2i6yVi8lbUyFtU8nP79-Qp2B9PRcDF8GD-dwZ6DppRhnUO9eN-YCyT8Ql96nD8Bttemqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=The+iNaturalist+Species+Classification+and+Detection+Dataset&rft.au=Van+Horn%2C+Grant&rft.au=Mac+Aodha%2C+Oisin&rft.au=Song%2C+Yang&rft.au=Cui%2C+Yin&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8769&rft.epage=8778&rft_id=info:doi/10.1109%2FCVPR.2018.00914&rft.externalDocID=8579012