Two-stream RNN/CNN for action recognition in 3D videos
The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior res...
Saved in:
Published in | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 4260 - 4267 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets. |
---|---|
AbstractList | The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets. |
Author | Rui Zhao Ali, Haider van der Smagt, Patrick |
Author_xml | – sequence: 1 surname: Rui Zhao fullname: Rui Zhao email: ruizhao@siemens.com organization: Siemens AG & Ludwig Maximilian Univ. of Munich, Munich, Germany – sequence: 2 givenname: Haider surname: Ali fullname: Ali, Haider email: hali@jhu.edu organization: Center for Imaging Sci., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 3 givenname: Patrick surname: van der Smagt fullname: van der Smagt, Patrick organization: German Aerosp. Center, Inst. of Robot. & Mechatron., Wessling, Germany |
BookMark | eNotj1FLwzAUhaMoOGd_gPiSP9Dt3qRJbx6lOh2MDuZ8HkmaSsQ10hbFf2_RPZ1z-DgHzjW76FIXGLtFWCCCWa5325eFACwXJEALojOWmZJQSdJCk1DnbCamlANpfcWyYXgHAITSkNEzpvffKR_GPtgj39X1sqpr3qaeWz_G1PE--PTWxT8fOy4f-FdsQhpu2GVrP4aQnXTOXleP--o532yf1tX9Jo-iwDEvnHJNKVsltQ8hKG-9xMa7onUWjA-tBEmFErbwE1BOakOEpBxaRO0bOWd3_7txqh8--3i0_c_h9FT-AoV9R6I |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IROS.2017.8206288 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538626825 1538626829 |
EISSN | 2153-0866 |
EndPage | 4267 |
ExternalDocumentID | 8206288 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-4b5bd73f536ceee5cac31dcb4fba09cef3038452a4cc315b36988185b1a116cd3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:35:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-4b5bd73f536ceee5cac31dcb4fba09cef3038452a4cc315b36988185b1a116cd3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8206288 |
PublicationCentury | 2000 |
PublicationDate | 2017-09 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems |
PublicationTitleAbbrev | IROS |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001079896 |
Score | 2.3796124 |
Snippet | The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4260 |
SubjectTerms | Convolution Logic gates Recurrent neural networks Skeleton Three-dimensional displays Training Videos |
Title | Two-stream RNN/CNN for action recognition in 3D videos |
URI | https://ieeexplore.ieee.org/document/8206288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGH6z7aQXPzbjdzh4tF1boMB5ukyTVTO3ZLcFKE0WY7toFxN_vdDWTY0HbwRC-OaBl-d5AbhSgSaYMbu-7XTyiGHaU3bT8zJmASUlnODMmQbGSTyakfs5nbfgeqOFMcZU5DPju2D1lp8Weu1MZX3nazzivA1te3GrtVpbe0rABBdx83AZBqJ_N3l4ctwt5jf5fnygUuHHcA_GXyXXtJFnf10qX3_8csr436rtQ2-r1EOPGww6gJbJD2H3m5PBLsTT98JzkhD5giZJ0h8kCbInVVQrGtCGQWTDyxzhG-SUecVbD2bD2-lg5DW_JXhLi8KlRxRVKcMZxbEt1FAtNQ5TrUimZCC0ySxYcUIjSbRNoArHgju0VqEMw1in-Ag6eZGbY0AiNYpTIZhOMyKp5EY5yXwkOFGRzswJdF0PLFa1Q4xF0_jTv6PPYMeNQk3MOodO-bo2FxbJS3VZDeEnTJedAw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1ixweOJE1iO7bPhaqFNqDSSr1VseNIFSJBkAqJr8dOQlnEgZtly_LuZ828Nwa4kJ4imDFzvs12cohmypHm0nNSZgAlIZzg1JoGRlHYn5KbGZ014HKlhdFal-Qz7dpk6ctPcrW0prKOjTUecL4G6wb3aVCptb4sKh4TXIS169L3RGcwvnuw7C3m1jV_fKFSIkhvG0afbVfEkUd3WUhXvf8Ky_jfzu1A-0urh-5XKLQLDZ3twda3MIMtCCdvuWNFIfETGkdRpxtFyLxVUaVpQCsOkUkvMoSvkNXm5a9tmPauJ92-U_-X4CwMDhcOkVQmDKcUh6ZRTVWssJ8oSVIZe0Lp1MAVJzSIiTIFVOJQcIvX0o99P1QJ3odmlmf6AJBItORUCKaSlMQ05lpa0XwgOJGBSvUhtOwMzJ-rkBjzevBHf2efw0Z_MhrOh4Po9hg27YpUNK0TaBYvS31qcL2QZ-VyfgCx9qBN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Two-stream+RNN%2FCNN+for+action+recognition+in+3D+videos&rft.au=Rui+Zhao&rft.au=Ali%2C+Haider&rft.au=van+der+Smagt%2C+Patrick&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=4260&rft.epage=4267&rft_id=info:doi/10.1109%2FIROS.2017.8206288&rft.externalDocID=8206288 |