Two-stream RNN/CNN for action recognition in 3D videos

The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior res...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 4260 - 4267
Main Authors Rui Zhao, Ali, Haider, van der Smagt, Patrick
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.
AbstractList The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.
Author Rui Zhao
Ali, Haider
van der Smagt, Patrick
Author_xml – sequence: 1
  surname: Rui Zhao
  fullname: Rui Zhao
  email: ruizhao@siemens.com
  organization: Siemens AG & Ludwig Maximilian Univ. of Munich, Munich, Germany
– sequence: 2
  givenname: Haider
  surname: Ali
  fullname: Ali, Haider
  email: hali@jhu.edu
  organization: Center for Imaging Sci., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  givenname: Patrick
  surname: van der Smagt
  fullname: van der Smagt, Patrick
  organization: German Aerosp. Center, Inst. of Robot. & Mechatron., Wessling, Germany
BookMark eNotj1FLwzAUhaMoOGd_gPiSP9Dt3qRJbx6lOh2MDuZ8HkmaSsQ10hbFf2_RPZ1z-DgHzjW76FIXGLtFWCCCWa5325eFACwXJEALojOWmZJQSdJCk1DnbCamlANpfcWyYXgHAITSkNEzpvffKR_GPtgj39X1sqpr3qaeWz_G1PE--PTWxT8fOy4f-FdsQhpu2GVrP4aQnXTOXleP--o532yf1tX9Jo-iwDEvnHJNKVsltQ8hKG-9xMa7onUWjA-tBEmFErbwE1BOakOEpBxaRO0bOWd3_7txqh8--3i0_c_h9FT-AoV9R6I
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS.2017.8206288
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538626825
1538626829
EISSN 2153-0866
EndPage 4267
ExternalDocumentID 8206288
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-4b5bd73f536ceee5cac31dcb4fba09cef3038452a4cc315b36988185b1a116cd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-4b5bd73f536ceee5cac31dcb4fba09cef3038452a4cc315b36988185b1a116cd3
PageCount 8
ParticipantIDs ieee_primary_8206288
PublicationCentury 2000
PublicationDate 2017-09
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.3796124
Snippet The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in...
SourceID ieee
SourceType Publisher
StartPage 4260
SubjectTerms Convolution
Logic gates
Recurrent neural networks
Skeleton
Three-dimensional displays
Training
Videos
Title Two-stream RNN/CNN for action recognition in 3D videos
URI https://ieeexplore.ieee.org/document/8206288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGH6z7aQXPzbjdzh4tF1boMB5ukyTVTO3ZLcFKE0WY7toFxN_vdDWTY0HbwRC-OaBl-d5AbhSgSaYMbu-7XTyiGHaU3bT8zJmASUlnODMmQbGSTyakfs5nbfgeqOFMcZU5DPju2D1lp8Weu1MZX3nazzivA1te3GrtVpbe0rABBdx83AZBqJ_N3l4ctwt5jf5fnygUuHHcA_GXyXXtJFnf10qX3_8csr436rtQ2-r1EOPGww6gJbJD2H3m5PBLsTT98JzkhD5giZJ0h8kCbInVVQrGtCGQWTDyxzhG-SUecVbD2bD2-lg5DW_JXhLi8KlRxRVKcMZxbEt1FAtNQ5TrUimZCC0ySxYcUIjSbRNoArHgju0VqEMw1in-Ag6eZGbY0AiNYpTIZhOMyKp5EY5yXwkOFGRzswJdF0PLFa1Q4xF0_jTv6PPYMeNQk3MOodO-bo2FxbJS3VZDeEnTJedAw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1ixweOJE1iO7bPhaqFNqDSSr1VseNIFSJBkAqJr8dOQlnEgZtly_LuZ828Nwa4kJ4imDFzvs12cohmypHm0nNSZgAlIZzg1JoGRlHYn5KbGZ014HKlhdFal-Qz7dpk6ctPcrW0prKOjTUecL4G6wb3aVCptb4sKh4TXIS169L3RGcwvnuw7C3m1jV_fKFSIkhvG0afbVfEkUd3WUhXvf8Ky_jfzu1A-0urh-5XKLQLDZ3twda3MIMtCCdvuWNFIfETGkdRpxtFyLxVUaVpQCsOkUkvMoSvkNXm5a9tmPauJ92-U_-X4CwMDhcOkVQmDKcUh6ZRTVWssJ8oSVIZe0Lp1MAVJzSIiTIFVOJQcIvX0o99P1QJ3odmlmf6AJBItORUCKaSlMQ05lpa0XwgOJGBSvUhtOwMzJ-rkBjzevBHf2efw0Z_MhrOh4Po9hg27YpUNK0TaBYvS31qcL2QZ-VyfgCx9qBN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Two-stream+RNN%2FCNN+for+action+recognition+in+3D+videos&rft.au=Rui+Zhao&rft.au=Ali%2C+Haider&rft.au=van+der+Smagt%2C+Patrick&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=4260&rft.epage=4267&rft_id=info:doi/10.1109%2FIROS.2017.8206288&rft.externalDocID=8206288