PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection
Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative c...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3089 - 3098 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00326 |
Cover
Loading…
Abstract | Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods. |
---|---|
AbstractList | Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods. |
Author | Han, Junwei Liu, Nian Yang, Ming-Hsuan |
Author_xml | – sequence: 1 givenname: Nian surname: Liu fullname: Liu, Nian – sequence: 2 givenname: Junwei surname: Han fullname: Han, Junwei – sequence: 3 givenname: Ming-Hsuan surname: Yang fullname: Yang, Ming-Hsuan |
BookMark | eNotzMtKw0AUgOFRFKy1axdu5gVSz5n7uCuxWiFo8bosk-RURuJEkhHatxfR1Q_f4j9lR6lPxNg5whwR_GX5un6cC0A3B5DCHLCZtw61dMYoAf6QTRCMLIxHf8Jm4_gBAMI46ZSesNU6lot7yle8ojCkmN75Ou6oK97iSLzsU6Zd_g4dX-RMKcc-8W0_8KfQRUrNnl9TpuaXz9jxNnQjzf47ZS83y-dyVVQPt3floiqiUJgLWbe1MBBcLSwJTS0GCNo3VqFRpF3bqlp4aH2NuqHGW22FRN8QWTRi28opu_j7RiLafA3xMwz7jdPWKaHkD3BzTiI |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00326 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 3098 |
ExternalDocumentID | 8578424 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-3bdb260a8b27e25ed1a0a59c74164e58dd4b290d9b15cec97572319cee7162fd3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-3bdb260a8b27e25ed1a0a59c74164e58dd4b290d9b15cec97572319cee7162fd3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578424 |
PublicationCentury | 2000 |
PublicationDate | 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06 |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5941565 |
Snippet | Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3089 |
SubjectTerms | Computational modeling Context modeling Dogs Feature extraction Saliency detection Task analysis Visualization |
Title | PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection |
URI | https://ieeexplore.ieee.org/document/8578424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4-Wj227tN4ISogJZKOi3Ei7O5iNZjFSEuKvd7q7ojEevHV7mnS6eW_aN6-EXAiVgIGky7QEzgRCCDOGW-Z9SnqKQ7DI3fbHk3A0FbczOauQy20vDADk4jNo-WF-l58s47U_Kmsr3F4iEFVSxcKt6NXanqcEoeKqvCHz3xwrm1Cr0s2n29HtwWN057VcXjzJvZnCj-dUcjQZ1sn4K45CRPLSWjvbij9-WTT-N9Bd0vzu26PRFpH2SAWyfVIviSYtf-NVg4yidNCfgLuipb3qM43SDbyyp3QFNDes2vi-Etp3rpBDUuS29B45u-_UpNfgcgVX1iTT4c3DYMTKJxVYilDtGLeJxQrGKBv0IJCYJNMxUseelwmQKkmEDXQn0bYrY4h1T_aQAGqM2ztNLRJ-QGrZMoNDQq2JEf64CCVgiRca7UubQPAFsjbcF3BEGn5h5m-Fa8a8XJPjv6dPyI5PTSHCOiU1976GM4R7Z8_zPH8C5SuoSg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pCBeNve_Boga3ttnojKJkKZFFQbqRdH2bRDCMjIf71tttEYzx463p66evyfa_93leEzlmgQYJ2iOBACTMQQqSkilifEj-g4E5zt_3-wAtH7HbMx2voYtULAwC5-Awadpjf5etZvLBHZc3AbC_msnW0YXCfO0W31upExfUCGpR3ZPabmtrGE0Hp5-O0RLPzGN1bNZeVT1Jrp_DjQZUcT7pV1P-KpJCRvDQWmWrEH79MGv8b6jaqf3fu4WiFSTtoDdJdVC2pJi5_5HkNhVHSaQ8gu8SlweozjpIlvJKnZA44t6xa2s4S3M6yQhCJDbvFD4a1215NfAVZruFK62jUvR52QlI-qkASA9YZoUorU8PIQLk-uNykSbYkF7FlZgx4oDVTrmhpoRweQyx87hsKKEzc1mtqqukeqqSzFPYRVjI2AEiZx8EUeZ4UtrhxGZ0a3mZ2Bhygml2YyVvhmzEp1-Tw7-kztBkO-71J72Zwd4S2bJoKSdYxqmTvCzgx4J-p0zznn98Oq5M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=PiCANet%3A+Learning+Pixel-Wise+Contextual+Attention+for+Saliency+Detection&rft.au=Liu%2C+Nian&rft.au=Han%2C+Junwei&rft.au=Yang%2C+Ming-Hsuan&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3089&rft.epage=3098&rft_id=info:doi/10.1109%2FCVPR.2018.00326&rft.externalDocID=8578424 |