PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection

Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative c...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3089 - 3098
Main Authors Liu, Nian, Han, Junwei, Yang, Ming-Hsuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00326

Cover

Loading…
Abstract Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods.
AbstractList Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods.
Author Han, Junwei
Liu, Nian
Yang, Ming-Hsuan
Author_xml – sequence: 1
  givenname: Nian
  surname: Liu
  fullname: Liu, Nian
– sequence: 2
  givenname: Junwei
  surname: Han
  fullname: Han, Junwei
– sequence: 3
  givenname: Ming-Hsuan
  surname: Yang
  fullname: Yang, Ming-Hsuan
BookMark eNotzMtKw0AUgOFRFKy1axdu5gVSz5n7uCuxWiFo8bosk-RURuJEkhHatxfR1Q_f4j9lR6lPxNg5whwR_GX5un6cC0A3B5DCHLCZtw61dMYoAf6QTRCMLIxHf8Jm4_gBAMI46ZSesNU6lot7yle8ojCkmN75Ou6oK97iSLzsU6Zd_g4dX-RMKcc-8W0_8KfQRUrNnl9TpuaXz9jxNnQjzf47ZS83y-dyVVQPt3floiqiUJgLWbe1MBBcLSwJTS0GCNo3VqFRpF3bqlp4aH2NuqHGW22FRN8QWTRi28opu_j7RiLafA3xMwz7jdPWKaHkD3BzTiI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00326
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3098
ExternalDocumentID 8578424
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-3bdb260a8b27e25ed1a0a59c74164e58dd4b290d9b15cec97572319cee7162fd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-3bdb260a8b27e25ed1a0a59c74164e58dd4b290d9b15cec97572319cee7162fd3
PageCount 10
ParticipantIDs ieee_primary_8578424
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5941565
Snippet Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task....
SourceID ieee
SourceType Publisher
StartPage 3089
SubjectTerms Computational modeling
Context modeling
Dogs
Feature extraction
Saliency detection
Task analysis
Visualization
Title PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection
URI https://ieeexplore.ieee.org/document/8578424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4-Wj227tN4ISogJZKOi3Ei7O5iNZjFSEuKvd7q7ojEevHV7mnS6eW_aN6-EXAiVgIGky7QEzgRCCDOGW-Z9SnqKQ7DI3fbHk3A0FbczOauQy20vDADk4jNo-WF-l58s47U_Kmsr3F4iEFVSxcKt6NXanqcEoeKqvCHz3xwrm1Cr0s2n29HtwWN057VcXjzJvZnCj-dUcjQZ1sn4K45CRPLSWjvbij9-WTT-N9Bd0vzu26PRFpH2SAWyfVIviSYtf-NVg4yidNCfgLuipb3qM43SDbyyp3QFNDes2vi-Etp3rpBDUuS29B45u-_UpNfgcgVX1iTT4c3DYMTKJxVYilDtGLeJxQrGKBv0IJCYJNMxUseelwmQKkmEDXQn0bYrY4h1T_aQAGqM2ztNLRJ-QGrZMoNDQq2JEf64CCVgiRca7UubQPAFsjbcF3BEGn5h5m-Fa8a8XJPjv6dPyI5PTSHCOiU1976GM4R7Z8_zPH8C5SuoSg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pCBeNve_Boga3ttnojKJkKZFFQbqRdH2bRDCMjIf71tttEYzx463p66evyfa_93leEzlmgQYJ2iOBACTMQQqSkilifEj-g4E5zt_3-wAtH7HbMx2voYtULAwC5-Awadpjf5etZvLBHZc3AbC_msnW0YXCfO0W31upExfUCGpR3ZPabmtrGE0Hp5-O0RLPzGN1bNZeVT1Jrp_DjQZUcT7pV1P-KpJCRvDQWmWrEH79MGv8b6jaqf3fu4WiFSTtoDdJdVC2pJi5_5HkNhVHSaQ8gu8SlweozjpIlvJKnZA44t6xa2s4S3M6yQhCJDbvFD4a1215NfAVZruFK62jUvR52QlI-qkASA9YZoUorU8PIQLk-uNykSbYkF7FlZgx4oDVTrmhpoRweQyx87hsKKEzc1mtqqukeqqSzFPYRVjI2AEiZx8EUeZ4UtrhxGZ0a3mZ2Bhygml2YyVvhmzEp1-Tw7-kztBkO-71J72Zwd4S2bJoKSdYxqmTvCzgx4J-p0zznn98Oq5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=PiCANet%3A+Learning+Pixel-Wise+Contextual+Attention+for+Saliency+Detection&rft.au=Liu%2C+Nian&rft.au=Han%2C+Junwei&rft.au=Yang%2C+Ming-Hsuan&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3089&rft.epage=3098&rft_id=info:doi/10.1109%2FCVPR.2018.00326&rft.externalDocID=8578424