Rotated region based CNN for ship detection

The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which ar...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Image Processing (ICIP) pp. 900 - 904
Main Authors Liu, Zikun, Hu, Jingao, Weng, Lubin, Yang, Yiping
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2017.8296411

Cover

Abstract The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which are common in remote sensing images. In this paper, we embrace this observation and introduce the rotated region based CNN (RR-CNN), which can learn and accurately extract features of rotated regions and locate rotated objects precisely. RR-CNN has three important new components including a rotated region of interest (RRoI) pooling layer, a rotated bounding box regression model and a multi-task method for non-maximal suppression (NMS) between different classes. Experimental results on the public ship dataset HRSC2016 confirm that RR-CNN outperforms baselines by a large margin.
AbstractList The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which are common in remote sensing images. In this paper, we embrace this observation and introduce the rotated region based CNN (RR-CNN), which can learn and accurately extract features of rotated regions and locate rotated objects precisely. RR-CNN has three important new components including a rotated region of interest (RRoI) pooling layer, a rotated bounding box regression model and a multi-task method for non-maximal suppression (NMS) between different classes. Experimental results on the public ship dataset HRSC2016 confirm that RR-CNN outperforms baselines by a large margin.
Author Liu, Zikun
Hu, Jingao
Weng, Lubin
Yang, Yiping
Author_xml – sequence: 1
  givenname: Zikun
  surname: Liu
  fullname: Liu, Zikun
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Jingao
  surname: Hu
  fullname: Hu, Jingao
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 3
  givenname: Lubin
  surname: Weng
  fullname: Weng, Lubin
  organization: Institute of Automation, Chinese Academy of Sciences
– sequence: 4
  givenname: Yiping
  surname: Yang
  fullname: Yang, Yiping
  organization: Institute of Automation, Chinese Academy of Sciences
BookMark eNotj01Lw0AYhFdRsK39AeJl75K4736-e5TgR6C0RfRcdpM3GtGkZPfivzdgT8MwD8PMkl0M40CM3YAoAYS_r6t6X0oBrkTprQY4Y2vvEIzwQoIzeM4WUiEUaLS_YsuUvoSYeQULdvc65pCp5RN99OPAY0izqbZb3o0TT5_9kbeUqclzeM0uu_CdaH3SFXt_enyrXorN7rmuHjZFLzXkQrmoMQRrHRoTO6caQilQxnmKsUpa8q0mb5RG2eomgLRaWB-hU40LRqkVu_3v7YnocJz6nzD9Hk7f1B8WP0Gr
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2017.8296411
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781509021758
1509021752
EISSN 2381-8549
EndPage 904
ExternalDocumentID 8296411
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-37b48aa667855bf73ce82082b17556326e9d4e953482d4ca1264069b1f3c7a533
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-37b48aa667855bf73ce82082b17556326e9d4e953482d4ca1264069b1f3c7a533
PageCount 5
ParticipantIDs ieee_primary_8296411
PublicationCentury 2000
PublicationDate 2017-09
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0002269320
Score 2.5134118
Snippet The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection...
SourceID ieee
SourceType Publisher
StartPage 900
SubjectTerms Convolution
convolutional neural network
Feature extraction
Marine vehicles
Object detection
Proposals
Rotated region
ship detection
Task analysis
Training
Title Rotated region based CNN for ship detection
URI https://ieeexplore.ieee.org/document/8296411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5MT56mbuJvcvCm7dI1adLzcGzCxhAHu43mR0GEVrS7-Nf7XlsrigdvpZCQNGm_r3nf9x7AjTRcO6vyQMUJDxBveZDKLA-sdwinaYTNyI28WCaztXjYyE0P7jovjPe-Fp_5kC7rWL4r7Y6OykaaYoRk5N3DbdZ4tbrzFKQRSEV497NFeWTaKGbE09F8Ml-RkEuFbSc_qqnUYDLtw-JrGI2G5CXcVSa0H78yNP53nIcw_LbtsVUHSEfQ88Ux9Fueydq3-H0At48lUUzHqCpDWTBCMscmyyVDBstIvsWcr2qNVjGE9fT-aTIL2qIJwTOCcYUfDCN0liUIQlKaXMXWI8jrsUGeIBMkaz51wqeSkto4YbMIGRFPUhPlsVUZkr8T2C_Kwp8C43JslDI6F0YLwfMsxpaO1hY7cDo6gwHNffva5MXYttM-__v2BRzQ82_0WZewX73t_BUCemWu65X8BC9znK0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1KPejJj1b8dg_eNOmm2c0m52JptQ1FWuitZLMbECERTS_-emeSGFE8eAuBXXYZNu9l570ZgBupeWhSlTnKD7iDeMudSCaZk1qDcBp5OIzcyPM4mKzEw1quO3DXemGstZX4zLr0WOXyTZFu6apsEFKOkIy8O4j7QtZurfZGBYkEkhHe_m5RJZkmj-nxaDAdTRck5VJuM82PfioVnIz3Yf61kFpF8uJuS-2mH79qNP53pQfQ_zbusUULSYfQsfkR7DdMkzXn-L0Ht08FkUzDqC9DkTPCMsNGccyQwzIScDFjy0qllfdhNb5fjiZO0zbBeUY4LvGToUWYJAHCkJQ6U35qEebDoUamIAOkazYywkaSytoYkSYeciIeRNrL_FQlSP-OoZsXuT0BxuVQK6XDTOhQCJ4lPo40FF2cwITeKfRo75vXujLGptn22d-vr2F3spzPNrNp_HgOexSLWq11Ad3ybWsvEd5LfVVF9ROa1J_6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Rotated+region+based+CNN+for+ship+detection&rft.au=Liu%2C+Zikun&rft.au=Hu%2C+Jingao&rft.au=Weng%2C+Lubin&rft.au=Yang%2C+Yiping&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=900&rft.epage=904&rft_id=info:doi/10.1109%2FICIP.2017.8296411&rft.externalDocID=8296411