Rotated region based CNN for ship detection
The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which ar...
Saved in:
Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 900 - 904 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP.2017.8296411 |
Cover
Abstract | The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which are common in remote sensing images. In this paper, we embrace this observation and introduce the rotated region based CNN (RR-CNN), which can learn and accurately extract features of rotated regions and locate rotated objects precisely. RR-CNN has three important new components including a rotated region of interest (RRoI) pooling layer, a rotated bounding box regression model and a multi-task method for non-maximal suppression (NMS) between different classes. Experimental results on the public ship dataset HRSC2016 confirm that RR-CNN outperforms baselines by a large margin. |
---|---|
AbstractList | The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which are common in remote sensing images. In this paper, we embrace this observation and introduce the rotated region based CNN (RR-CNN), which can learn and accurately extract features of rotated regions and locate rotated objects precisely. RR-CNN has three important new components including a rotated region of interest (RRoI) pooling layer, a rotated bounding box regression model and a multi-task method for non-maximal suppression (NMS) between different classes. Experimental results on the public ship dataset HRSC2016 confirm that RR-CNN outperforms baselines by a large margin. |
Author | Liu, Zikun Hu, Jingao Weng, Lubin Yang, Yiping |
Author_xml | – sequence: 1 givenname: Zikun surname: Liu fullname: Liu, Zikun organization: Institute of Automation, Chinese Academy of Sciences – sequence: 2 givenname: Jingao surname: Hu fullname: Hu, Jingao organization: Institute of Automation, Chinese Academy of Sciences – sequence: 3 givenname: Lubin surname: Weng fullname: Weng, Lubin organization: Institute of Automation, Chinese Academy of Sciences – sequence: 4 givenname: Yiping surname: Yang fullname: Yang, Yiping organization: Institute of Automation, Chinese Academy of Sciences |
BookMark | eNotj01Lw0AYhFdRsK39AeJl75K4736-e5TgR6C0RfRcdpM3GtGkZPfivzdgT8MwD8PMkl0M40CM3YAoAYS_r6t6X0oBrkTprQY4Y2vvEIzwQoIzeM4WUiEUaLS_YsuUvoSYeQULdvc65pCp5RN99OPAY0izqbZb3o0TT5_9kbeUqclzeM0uu_CdaH3SFXt_enyrXorN7rmuHjZFLzXkQrmoMQRrHRoTO6caQilQxnmKsUpa8q0mb5RG2eomgLRaWB-hU40LRqkVu_3v7YnocJz6nzD9Hk7f1B8WP0Gr |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2017.8296411 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781509021758 1509021752 |
EISSN | 2381-8549 |
EndPage | 904 |
ExternalDocumentID | 8296411 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-37b48aa667855bf73ce82082b17556326e9d4e953482d4ca1264069b1f3c7a533 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-37b48aa667855bf73ce82082b17556326e9d4e953482d4ca1264069b1f3c7a533 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8296411 |
PublicationCentury | 2000 |
PublicationDate | 2017-09 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 ssj0002269320 |
Score | 2.5134118 |
Snippet | The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 900 |
SubjectTerms | Convolution convolutional neural network Feature extraction Marine vehicles Object detection Proposals Rotated region ship detection Task analysis Training |
Title | Rotated region based CNN for ship detection |
URI | https://ieeexplore.ieee.org/document/8296411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5MT56mbuJvcvCm7dI1adLzcGzCxhAHu43mR0GEVrS7-Nf7XlsrigdvpZCQNGm_r3nf9x7AjTRcO6vyQMUJDxBveZDKLA-sdwinaYTNyI28WCaztXjYyE0P7jovjPe-Fp_5kC7rWL4r7Y6OykaaYoRk5N3DbdZ4tbrzFKQRSEV497NFeWTaKGbE09F8Ml-RkEuFbSc_qqnUYDLtw-JrGI2G5CXcVSa0H78yNP53nIcw_LbtsVUHSEfQ88Ux9Fueydq3-H0At48lUUzHqCpDWTBCMscmyyVDBstIvsWcr2qNVjGE9fT-aTIL2qIJwTOCcYUfDCN0liUIQlKaXMXWI8jrsUGeIBMkaz51wqeSkto4YbMIGRFPUhPlsVUZkr8T2C_Kwp8C43JslDI6F0YLwfMsxpaO1hY7cDo6gwHNffva5MXYttM-__v2BRzQ82_0WZewX73t_BUCemWu65X8BC9znK0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1KPejJj1b8dg_eNOmm2c0m52JptQ1FWuitZLMbECERTS_-emeSGFE8eAuBXXYZNu9l570ZgBupeWhSlTnKD7iDeMudSCaZk1qDcBp5OIzcyPM4mKzEw1quO3DXemGstZX4zLr0WOXyTZFu6apsEFKOkIy8O4j7QtZurfZGBYkEkhHe_m5RJZkmj-nxaDAdTRck5VJuM82PfioVnIz3Yf61kFpF8uJuS-2mH79qNP53pQfQ_zbusUULSYfQsfkR7DdMkzXn-L0Ht08FkUzDqC9DkTPCMsNGccyQwzIScDFjy0qllfdhNb5fjiZO0zbBeUY4LvGToUWYJAHCkJQ6U35qEebDoUamIAOkazYywkaSytoYkSYeciIeRNrL_FQlSP-OoZsXuT0BxuVQK6XDTOhQCJ4lPo40FF2cwITeKfRo75vXujLGptn22d-vr2F3spzPNrNp_HgOexSLWq11Ad3ybWsvEd5LfVVF9ROa1J_6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Rotated+region+based+CNN+for+ship+detection&rft.au=Liu%2C+Zikun&rft.au=Hu%2C+Jingao&rft.au=Weng%2C+Lubin&rft.au=Yang%2C+Yiping&rft.date=2017-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=900&rft.epage=904&rft_id=info:doi/10.1109%2FICIP.2017.8296411&rft.externalDocID=8296411 |