A dynamic conditional random field model for object segmentation in image sequences

This paper presents a dynamic conditional random field (DCRF) model to integrate contextual constraints for object segmentation in image sequences. Spatial and temporal dependencies within the segmentation process are unified by a dynamic probabilistic framework based on the conditional random field...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 264 - 270 vol. 1
Main Authors Yang Wang, Qiang Ji
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a dynamic conditional random field (DCRF) model to integrate contextual constraints for object segmentation in image sequences. Spatial and temporal dependencies within the segmentation process are unified by a dynamic probabilistic framework based on the conditional random field (CRF). An efficient approximate filtering algorithm is derived for the DCRF model to recursively estimate the segmentation field from the history of video frames. The segmentation method employs both intensity and motion cues, and it combines dynamic information and spatial interaction of the observed data. Experimental results show that the proposed approach effectively fuses contextual constraints in video sequences and improves the accuracy of object segmentation.
AbstractList This paper presents a dynamic conditional random field (DCRF) model to integrate contextual constraints for object segmentation in image sequences. Spatial and temporal dependencies within the segmentation process are unified by a dynamic probabilistic framework based on the conditional random field (CRF). An efficient approximate filtering algorithm is derived for the DCRF model to recursively estimate the segmentation field from the history of video frames. The segmentation method employs both intensity and motion cues, and it combines dynamic information and spatial interaction of the observed data. Experimental results show that the proposed approach effectively fuses contextual constraints in video sequences and improves the accuracy of object segmentation.
Author Qiang Ji
Yang Wang
Author_xml – sequence: 1
  surname: Yang Wang
  fullname: Yang Wang
  organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
– sequence: 2
  surname: Qiang Ji
  fullname: Qiang Ji
  organization: Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
BookMark eNpNTktLAzEYDFrBtvbmzUv-wK7Jl9fmWIovKCi-riWbfFtSdhPdXQ_9967owWFgYGYYZkFmKSck5JKzknNmrzfvT88lMKZK0CdkzpkWhbbcnpIFM9oqEAZg9i84J6thOLAJwopKwpy8rGk4JtdFT31OIY4xJ9fS3qWQO9pEbAPtcsCWNrmnuT6gH-mA-w7T6H7KNE7s3B4n9_MLk8fhgpw1rh1w9adL8nZ787q5L7aPdw-b9baIIPlYgOO1lZqB90w1gSmPEuqqlmCUqLTXaEOlpGwCMKld7RgE43ylmA9CoBRLcvW7GxFx99FPN_rjjkttwBjxDZ9GUyo
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.26
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 270 vol. 1
ExternalDocumentID 1467277
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-2a1b94602cc05fd05ce42b8b4275386c6e9d8544fd2046aba02d7ac850cd33e43
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-2a1b94602cc05fd05ce42b8b4275386c6e9d8544fd2046aba02d7ac850cd33e43
ParticipantIDs ieee_primary_1467277
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.8125108
Snippet This paper presents a dynamic conditional random field (DCRF) model to integrate contextual constraints for object segmentation in image sequences. Spatial and...
SourceID ieee
SourceType Publisher
StartPage 264
SubjectTerms Filtering algorithms
Hidden Markov models
History
Image segmentation
Image sequences
Layout
Motion estimation
Object segmentation
Recursive estimation
Video sequences
Title A dynamic conditional random field model for object segmentation in image sequences
URI https://ieeexplore.ieee.org/document/1467277
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLXaTkwFWsRbHhhJ6zq2E4-ookJIRRVQ1K3y4wZVqCmi6cLXYzsPEGJAyhA7S2LZufec-zgIXY0Mcz5bApFSBiJmYhlJIDyimUyIzahJgjbg9EHczdn9gi9a6LqphQGAkHwGA38bYvl2Y3aeKhv6U02TpI3aDriVtVoNn-JrTNMK5vlx7JCNkE1EgXo1lhD5FHEk5EiWEF5y_4BWnXjqsWwy5OVw_DJ7LKkX33_hhwJLMECTLprWr17mnbwNdoUemM9fXR3_-237qP9d6odnjRE7QC3ID1G38k1xdfK3bqqWf6jneujpBttSzx47UG1XJauInfGzmzUOqXE4CO1g5xjjjfaMD97C67oqd8rxyl1r90PDTUJ3H80nt8_ju6jSaIhWzvYXEVUjLZkg1BjCM0u4AUZ1qhl1OCgVRoC0KWcss9QhcaUVoTZRJuXE2DgGFh-hTr7J4Rhh6WW0FBdGUXBOmgOCVkiICQORaYdDT1DPL9vyvWzDsaxW7PTv6TO0F7qsBrbkHHWKjx1cOP-h0Jdh43wBFfW7-g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPcAJWkAUaOsDHLNkHduJDxwqHlrKQ4iXuC2OPUGrahPE7grBb-Gv9L917GRTVPWKVCmH2JEixeN4Zr55fABbXSvIZksxMsZiJGyiI42xjHih09gV3KaBG_D0TPWuxY9beTsDr20tDCKG5DPs-NsQy3eVnXiobMf_1TxNmxTKY3x-IgdttHu0T9Lc5vzw4GqvFzUcAtGAdNM44qaba6Fibm0sCxdLi4LnWS442emZsgq1y6QQhePkKZrcxNylxmYyti5JUCT03ln4QHaG5HV1WIvg-KrWrHEs_TghX0rpNobBPf9LiLWqJFK6q2vQQEv_gDe9f6Zj3ebk6529m_OLGuzxHR_ecL4ElXe4CL-mi1VnuvzsTMZ5x7781Ufyf13NJVj5U8zIzls1_RFmsPwEi431zZqzbURTU4KL6dwyXH5n7rk0w4FltvKx_YCbMlLvrhqykPzHApUQI9OfVbnHtNgI74dNQVfJBnQN6chmbcr6Cly_yzevwlxZlbgGTHuiMCOVNRzJDCVX1ymNSSxQFTl52p9h2Yup_1A3Guk3Elr_9_Q3mO9dnZ70T47OjjdgIfSUDdjQJsyNHyf4haylcf41bFoGd-8t19-Ylhj4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=A+dynamic+conditional+random+field+model+for+object+segmentation+in+image+sequences&rft.au=Yang+Wang&rft.au=Qiang+Ji&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=264&rft.epage=270+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.26&rft.externalDocID=1467277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon