RadiX-Net: Structured Sparse Matrices for Deep Neural Networks

The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has explored the prospect of sparsifying DNNs before, during, and after training by pruning edges from the underlying topology. The resulting neural ne...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) pp. 268 - 274
Main Authors Kepner, Jeremy, Robinett, Ryan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2019
Subjects
Online AccessGet full text
DOI10.1109/IPDPSW.2019.00051

Cover

Abstract The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has explored the prospect of sparsifying DNNs before, during, and after training by pruning edges from the underlying topology. The resulting neural network is known as a sparse neural network. More recent work has demonstrated the remarkable result that certain sparse DNNs can train to the same precision as dense DNNs at lower runtime and storage cost. An intriguing class of these sparse DNNs is the X-Nets, which are initialized and trained upon a sparse topology with neither reference to a parent dense DNN nor subsequent pruning. We present an algorithm that deterministically generates RadiX-Nets: sparse DNN topologies that, as a whole, are much more diverse than X-Net topologies, while preserving X-Nets' desired characteristics. We further present a functional-analytic conjecture based on the longstanding observation that sparse neural network topologies can attain the same expressive power as dense counterparts.
AbstractList The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has explored the prospect of sparsifying DNNs before, during, and after training by pruning edges from the underlying topology. The resulting neural network is known as a sparse neural network. More recent work has demonstrated the remarkable result that certain sparse DNNs can train to the same precision as dense DNNs at lower runtime and storage cost. An intriguing class of these sparse DNNs is the X-Nets, which are initialized and trained upon a sparse topology with neither reference to a parent dense DNN nor subsequent pruning. We present an algorithm that deterministically generates RadiX-Nets: sparse DNN topologies that, as a whole, are much more diverse than X-Net topologies, while preserving X-Nets' desired characteristics. We further present a functional-analytic conjecture based on the longstanding observation that sparse neural network topologies can attain the same expressive power as dense counterparts.
Author Kepner, Jeremy
Robinett, Ryan
Author_xml – sequence: 1
  givenname: Jeremy
  surname: Kepner
  fullname: Kepner, Jeremy
  organization: MIT Lincoln Laboratory Supercomputing Center
– sequence: 2
  givenname: Ryan
  surname: Robinett
  fullname: Robinett, Ryan
  organization: MIT
BookMark eNotjl1LwzAYRiMo6OZ-gHiTP9D65qtJvBBkmzqYc1hF70aavoXqXEuSIv57C3p14DnwcCbk-NAdkJALBjljYK9W28W2fMs5MJsDgGJHZMI0N0yoUZ-SWYwf484Lo8DCGbl5dnX7nm0wXdMyhcGnIWBNy96FiPTRpdB6jLTpAl0g9nSDQ3D7Eem7C5_xnJw0bh9x9s8peb1bvswfsvXT_Wp-u85aLlnKuNTec2erBtD7GlhhwciGGUSjZCWwkWA513bsKmqrpFBeauEqWUgOCsWUXP79toi460P75cLPzmhtuJDiF543R3Y
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW.2019.00051
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728135109
9781728135106
EndPage 274
ExternalDocumentID 8778234
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i241t-247cc2a9bf0eccd0169084f18ee854b3ef40922792686d95435c473ab464205e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-247cc2a9bf0eccd0169084f18ee854b3ef40922792686d95435c473ab464205e3
PageCount 7
ParticipantIDs ieee_primary_8778234
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
PublicationTitleAbbrev IPDPSW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685090
Score 1.9059086
Snippet The sizes of deep neural networks (DNNs) are rapidly outgrowing the capacity of hardware to store and train them. Research over the past few decades has...
SourceID ieee
SourceType Publisher
StartPage 268
SubjectTerms artificial intelligence
Decision trees
Feedforward neural networks
Network topology
Nickel
Sparse matrices
sparse neural networks
Topology
Title RadiX-Net: Structured Sparse Matrices for Deep Neural Networks
URI https://ieeexplore.ieee.org/document/8778234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ09qwPidPXi0UNrZZevBi0jUBEJEIjfS7k4TogEi5eKvd3YLaIwHT2166U6nmzez8-YNwFVbk0GbO5Y4uhFm0gYJx6VBKPMISeUJ-kbh_kA9jPFpIicVuN71whCRJ59R0936Wr5dmLU7KmvpDuNZjFWo8m9W9mrtzlMipRn7toXLdpi0Hofd4ejVsbecJGXoSpE_Bqh4_OjtQ3_75pI28tZcF1nTfP4SZfzv0g6g8d2pJ4Y7DDqECs3rcPuc2tkkGFBxI0ZeH3b9QVaMlpzEkuh7UX5aCQ5XRZdoKZxAR_rOF88IXzVg3Lt_uXsINnMSghnjbxFE2DEmSpMsD9kh1umrhBpzdgNpiVlMOSdxXilQaWUTyRGSwU6cZsjJRygpPoLafDGnYxCYKZMqy0EFWVSGoxmSnHvzxlW6rSJ9AnVn-3RZSmFMN2af_v34DPbc1y_5gedQY4vpgjG8yC69874AHgmaZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSkBozf7sGjhVJ2l60HLyIBpYQIRG6k3Z0mRANEysVf7-wW0BgPntr00k4mzXuz8-YNwE1NoeYmtSpxbleYCeOFxEs9X6QBR5mG3A0KRz3ZHvGnsRgX4HY7C4OITnyGFXvrevlmrlf2qKyqGoRndb4Du4T7XOTTWtsTlUAqQr9N67Lmh9VOv9kfvFr9ljWl9G0z8scKFYcgrQOINu_OhSNvlVWWVPTnL1vG_37cIZS_Z_VYf4tCR1DAWQnuX2IzHXs9zO7YwDnErj7QsMGCylhkkbPlxyUjwsqaiAtmLTrid7o4TfiyDKPW4_Ch7a03JXhTQuDMC3hD6yAOk9SnlBjrsOIrnlIiUAme1DGlMs55BUolTSiII2neqMcJp_LDF1g_huJsPsMTYDyROpaGaAUaLjXxGRRUfdOvK1VNBuoUSjb2ySI3w5iswz77-_E17LWHUXfS7fSez2HfZiJXC15AkaLHS0L0LLlyifwCZ-OdsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=RadiX-Net%3A+Structured+Sparse+Matrices+for+Deep+Neural+Networks&rft.au=Kepner%2C+Jeremy&rft.au=Robinett%2C+Ryan&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=268&rft.epage=274&rft_id=info:doi/10.1109%2FIPDPSW.2019.00051&rft.externalDocID=8778234