From RGB to Spectrum for Natural Scenes via Manifold-Based Mapping
Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants...
Saved in:
Published in | 2017 IEEE International Conference on Computer Vision (ICCV) pp. 4715 - 4723 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants and soils in agriculture based on their spectral properties. In this paper, we present an efficient manifold learning based method for accurately reconstructing a hyperspectral image from a single RGB image captured by a commercial camera with known spectral response. By applying a nonlinear dimensionality reduction technique to a large set of natural spectra, we show that the spectra of natural scenes lie on an intrinsically low dimensional manifold. This allows us to map an RGB vector to its corresponding hyperspectral vector accurately via our proposed novel manifold-based reconstruction pipeline. Experiments using both synthesized RGB images using hyperspectral datasets and real world data demonstrate our method outperforms the state-of-the-art. |
---|---|
AbstractList | Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants and soils in agriculture based on their spectral properties. In this paper, we present an efficient manifold learning based method for accurately reconstructing a hyperspectral image from a single RGB image captured by a commercial camera with known spectral response. By applying a nonlinear dimensionality reduction technique to a large set of natural spectra, we show that the spectra of natural scenes lie on an intrinsically low dimensional manifold. This allows us to map an RGB vector to its corresponding hyperspectral vector accurately via our proposed novel manifold-based reconstruction pipeline. Experiments using both synthesized RGB images using hyperspectral datasets and real world data demonstrate our method outperforms the state-of-the-art. |
Author | Subpa-Asa, Art Sato, Imari Yinqiang Zheng Sato, Yoichi Jia, Yan Lin Gu Lam, Antony |
Author_xml | – sequence: 1 givenname: Yan surname: Jia fullname: Jia, Yan organization: RWTH Aachen Univ., Aachen, Germany – sequence: 2 surname: Yinqiang Zheng fullname: Yinqiang Zheng organization: Nat. Inst. of Inf., Tokyo, Japan – sequence: 3 surname: Lin Gu fullname: Lin Gu organization: Nat. Inst. of Inf., Tokyo, Japan – sequence: 4 givenname: Art surname: Subpa-Asa fullname: Subpa-Asa, Art organization: Tokyo Inst. of Technol., Tokyo, Japan – sequence: 5 givenname: Antony surname: Lam fullname: Lam, Antony organization: Saitama Univ., Saitama, Japan – sequence: 6 givenname: Yoichi surname: Sato fullname: Sato, Yoichi organization: Univ. of Tokyo, Tokyo, Japan – sequence: 7 givenname: Imari surname: Sato fullname: Sato, Imari organization: Nat. Inst. of Inf., Tokyo, Japan |
BookMark | eNotjMtKAzEUQKMo2NYuXbnJD8x485g8lnawtVAVbHFb7mQSicyLzFTw7y3o6nA4cObkqus7T8gdg5wxsA_bsvzIOTCdFyAvyNJqwwphFAPB7SWZcWEg0-d2Q-bj-AUgLDdqRlbr1Lf0fbOiU0_3g3dTOrU09Im-4nRK2NC9850f6XdE-oJdDH1TZyscfX3WYYjd5y25DtiMfvnPBTmsnw7lc7Z722zLx10WuWRTxoXjyle1Ac2c9VoJYOBqBsEEzhEQaqUrZhGNk0WQRilpqsoZ5VBWVizI_d82eu-PQ4otpp-j4UJrpcQvUQZJoQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2017.504 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538610329 1538610329 |
EISSN | 2380-7504 |
EndPage | 4723 |
ExternalDocumentID | 8237766 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-23c26ebd8071c9e763010cd10f8f22a0a0d67b19aa8c45f486648bbc86ca4b93 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:27:53 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-23c26ebd8071c9e763010cd10f8f22a0a0d67b19aa8c45f486648bbc86ca4b93 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8237766 |
PublicationCentury | 2000 |
PublicationDate | 2017-10 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Computer Vision (ICCV) |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.4022067 |
Snippet | Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4715 |
SubjectTerms | Cameras Hyperspectral imaging Image reconstruction Lighting Manifolds Three-dimensional displays |
Title | From RGB to Spectrum for Natural Scenes via Manifold-Based Mapping |
URI | https://ieeexplore.ieee.org/document/8237766 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0e77KPbba8QEU0gxqDhRqaPNUTZNbh48Nfb7i5gjAdvbdOk7_mm7cw3CF1FKgkZxIpEUmlCqQECzAdidWNh9xAoAPc0MJ6w0RO9n8WzBrre-sIYY0rjM-O5ZPmXr3O1dk9lPUeskjDWRM1EiMpXayN1LcxztuPQ7N0NBs_OcCvxYheD7UfklBI4hm003jRZ2Yu8eutCeurrFxvjf_u0j7o7Fz38sAWfA9Qw2SFq1zolrk_sRwf1h6t8iR9v-7jIsQs2X6zWS2w1VTyBknLD1nXiDn8uAI8hW6T5myZ9i23aZh15w0sXTYc308GI1HETyMLicUHCSIXMSM2t-qCEsRLEXrqUDvyUp2EIPviaJTIQAFzROKWcMcqlVJwpoFJER6iV5Zk5RjjW2n2MpjE1jAZUS9_4UaQpTRMIBQ9OUMfNyPy9YsaY15Nx-nfxGdpzK1KZwp2jlh2wubCQXsjLci2_AXVjoO8 |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Yx9d110hIigjxqDhRl4_ZoiyGRwe_OtttwHGePDWNU22fuz9fm3f-z2ErnwRehQCYflcSIsQBRZQByzNjSO9hkAAmKOBeET7T-RuEkxq6HodC6OUKpzPlG2KxV2-zMTSHJW1jbBKSOkW2g4MryijtVZ2VwM9oxsVzfag2302rluhHZgsbD9ypxTQ0WugePXS0mPk1V7m3BZfv_QY__tVe6i1CdLDD2v42Uc1lR6gRsUqcfXPfjRRp7fI5vjxtoPzDJt08_liOceaq-IRFKIbuq0xePhzBjiGdJZkb9LqaHST-tHIN7y00Lh3M-72rSpzgjXTiJxbni88qrhkmkCISGkborddQrpOwhLPAwccSUPuRgBMkCAhjFLCOBeMCiA88g9RPc1SdYRwIKW5Gk0CoihxieSOcnxfEpKE4EXMPUZNMyLT91IbY1oNxsnf1Zdopz-Oh9PhYHR_inbN7JSOcWeorjuvzjXA5_yimNdvFVmkPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Computer+Vision+%28ICCV%29&rft.atitle=From+RGB+to+Spectrum+for+Natural+Scenes+via+Manifold-Based+Mapping&rft.au=Jia%2C+Yan&rft.au=Yinqiang+Zheng&rft.au=Lin+Gu&rft.au=Subpa-Asa%2C+Art&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4715&rft.epage=4723&rft_id=info:doi/10.1109%2FICCV.2017.504&rft.externalDocID=8237766 |