From RGB to Spectrum for Natural Scenes via Manifold-Based Mapping

Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Computer Vision (ICCV) pp. 4715 - 4723
Main Authors Jia, Yan, Yinqiang Zheng, Lin Gu, Subpa-Asa, Art, Lam, Antony, Sato, Yoichi, Sato, Imari
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants and soils in agriculture based on their spectral properties. In this paper, we present an efficient manifold learning based method for accurately reconstructing a hyperspectral image from a single RGB image captured by a commercial camera with known spectral response. By applying a nonlinear dimensionality reduction technique to a large set of natural spectra, we show that the spectra of natural scenes lie on an intrinsically low dimensional manifold. This allows us to map an RGB vector to its corresponding hyperspectral vector accurately via our proposed novel manifold-based reconstruction pipeline. Experiments using both synthesized RGB images using hyperspectral datasets and real world data demonstrate our method outperforms the state-of-the-art.
AbstractList Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants and soils in agriculture based on their spectral properties. In this paper, we present an efficient manifold learning based method for accurately reconstructing a hyperspectral image from a single RGB image captured by a commercial camera with known spectral response. By applying a nonlinear dimensionality reduction technique to a large set of natural spectra, we show that the spectra of natural scenes lie on an intrinsically low dimensional manifold. This allows us to map an RGB vector to its corresponding hyperspectral vector accurately via our proposed novel manifold-based reconstruction pipeline. Experiments using both synthesized RGB images using hyperspectral datasets and real world data demonstrate our method outperforms the state-of-the-art.
Author Subpa-Asa, Art
Sato, Imari
Yinqiang Zheng
Sato, Yoichi
Jia, Yan
Lin Gu
Lam, Antony
Author_xml – sequence: 1
  givenname: Yan
  surname: Jia
  fullname: Jia, Yan
  organization: RWTH Aachen Univ., Aachen, Germany
– sequence: 2
  surname: Yinqiang Zheng
  fullname: Yinqiang Zheng
  organization: Nat. Inst. of Inf., Tokyo, Japan
– sequence: 3
  surname: Lin Gu
  fullname: Lin Gu
  organization: Nat. Inst. of Inf., Tokyo, Japan
– sequence: 4
  givenname: Art
  surname: Subpa-Asa
  fullname: Subpa-Asa, Art
  organization: Tokyo Inst. of Technol., Tokyo, Japan
– sequence: 5
  givenname: Antony
  surname: Lam
  fullname: Lam, Antony
  organization: Saitama Univ., Saitama, Japan
– sequence: 6
  givenname: Yoichi
  surname: Sato
  fullname: Sato, Yoichi
  organization: Univ. of Tokyo, Tokyo, Japan
– sequence: 7
  givenname: Imari
  surname: Sato
  fullname: Sato, Imari
  organization: Nat. Inst. of Inf., Tokyo, Japan
BookMark eNotjMtKAzEUQKMo2NYuXbnJD8x485g8lnawtVAVbHFb7mQSicyLzFTw7y3o6nA4cObkqus7T8gdg5wxsA_bsvzIOTCdFyAvyNJqwwphFAPB7SWZcWEg0-d2Q-bj-AUgLDdqRlbr1Lf0fbOiU0_3g3dTOrU09Im-4nRK2NC9850f6XdE-oJdDH1TZyscfX3WYYjd5y25DtiMfvnPBTmsnw7lc7Z722zLx10WuWRTxoXjyle1Ac2c9VoJYOBqBsEEzhEQaqUrZhGNk0WQRilpqsoZ5VBWVizI_d82eu-PQ4otpp-j4UJrpcQvUQZJoQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2017.504
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538610329
1538610329
EISSN 2380-7504
EndPage 4723
ExternalDocumentID 8237766
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-23c26ebd8071c9e763010cd10f8f22a0a0d67b19aa8c45f486648bbc86ca4b93
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:53 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-23c26ebd8071c9e763010cd10f8f22a0a0d67b19aa8c45f486648bbc86ca4b93
PageCount 9
ParticipantIDs ieee_primary_8237766
PublicationCentury 2000
PublicationDate 2017-10
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Computer Vision (ICCV)
PublicationTitleAbbrev ICCV
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.4022067
Snippet Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by...
SourceID ieee
SourceType Publisher
StartPage 4715
SubjectTerms Cameras
Hyperspectral imaging
Image reconstruction
Lighting
Manifolds
Three-dimensional displays
Title From RGB to Spectrum for Natural Scenes via Manifold-Based Mapping
URI https://ieeexplore.ieee.org/document/8237766
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6AkydUML7Tg0e77KPbba8QEU0gxqDhRqaPNUTZNbh48Nfb7i5gjAdvbdOk7_mm7cw3CF1FKgkZxIpEUmlCqQECzAdidWNh9xAoAPc0MJ6w0RO9n8WzBrre-sIYY0rjM-O5ZPmXr3O1dk9lPUeskjDWRM1EiMpXayN1LcxztuPQ7N0NBs_OcCvxYheD7UfklBI4hm003jRZ2Yu8eutCeurrFxvjf_u0j7o7Fz38sAWfA9Qw2SFq1zolrk_sRwf1h6t8iR9v-7jIsQs2X6zWS2w1VTyBknLD1nXiDn8uAI8hW6T5myZ9i23aZh15w0sXTYc308GI1HETyMLicUHCSIXMSM2t-qCEsRLEXrqUDvyUp2EIPviaJTIQAFzROKWcMcqlVJwpoFJER6iV5Zk5RjjW2n2MpjE1jAZUS9_4UaQpTRMIBQ9OUMfNyPy9YsaY15Nx-nfxGdpzK1KZwp2jlh2wubCQXsjLci2_AXVjoO8
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0Yx9d110hIigjxqDhRl4_ZoiyGRwe_OtttwHGePDWNU22fuz9fm3f-z2ErnwRehQCYflcSIsQBRZQByzNjSO9hkAAmKOBeET7T-RuEkxq6HodC6OUKpzPlG2KxV2-zMTSHJW1jbBKSOkW2g4MryijtVZ2VwM9oxsVzfag2302rluhHZgsbD9ypxTQ0WugePXS0mPk1V7m3BZfv_QY__tVe6i1CdLDD2v42Uc1lR6gRsUqcfXPfjRRp7fI5vjxtoPzDJt08_liOceaq-IRFKIbuq0xePhzBjiGdJZkb9LqaHST-tHIN7y00Lh3M-72rSpzgjXTiJxbni88qrhkmkCISGkborddQrpOwhLPAwccSUPuRgBMkCAhjFLCOBeMCiA88g9RPc1SdYRwIKW5Gk0CoihxieSOcnxfEpKE4EXMPUZNMyLT91IbY1oNxsnf1Zdopz-Oh9PhYHR_inbN7JSOcWeorjuvzjXA5_yimNdvFVmkPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Computer+Vision+%28ICCV%29&rft.atitle=From+RGB+to+Spectrum+for+Natural+Scenes+via+Manifold-Based+Mapping&rft.au=Jia%2C+Yan&rft.au=Yinqiang+Zheng&rft.au=Lin+Gu&rft.au=Subpa-Asa%2C+Art&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4715&rft.epage=4723&rft_id=info:doi/10.1109%2FICCV.2017.504&rft.externalDocID=8237766