Cluster identification and scaling methods based on comparative quantification for dissimilarity data

This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obt...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Fuzzy Systems conference proceedings pp. 1 - 6
Main Authors Sato-Ilic, Mika, Ilic, Peter
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
ISSN1558-4739
DOI10.1109/FUZZ-IEEE.2017.8015443

Cover

Loading…
Abstract This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obtain the quantitative amount of relationship between a pair of clusters or relationship between a cluster and a basis which spans a subspace constructed a scale. The merits of these methods are that we can obtain "comparability" of obtained clusters over times (or subjects) and supply an "adaptable scale" for observed dissimilarity between a pair of objects, in order to reduce the number of dimensions of the observed data and explain the dissimilarity relationships among objects in the lower dimensional subspace. Numerical examples to investigate the educational effectiveness by using the cognitive 3-way dissimilarity data of students demonstrate a better performance for the proposed methods.
AbstractList This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obtain the quantitative amount of relationship between a pair of clusters or relationship between a cluster and a basis which spans a subspace constructed a scale. The merits of these methods are that we can obtain "comparability" of obtained clusters over times (or subjects) and supply an "adaptable scale" for observed dissimilarity between a pair of objects, in order to reduce the number of dimensions of the observed data and explain the dissimilarity relationships among objects in the lower dimensional subspace. Numerical examples to investigate the educational effectiveness by using the cognitive 3-way dissimilarity data of students demonstrate a better performance for the proposed methods.
Author Sato-Ilic, Mika
Ilic, Peter
Author_xml – sequence: 1
  givenname: Mika
  surname: Sato-Ilic
  fullname: Sato-Ilic, Mika
  email: mika@risk.tsukuba.ac.jp
  organization: Fac. of Eng., Inf. & Syst., Univ. of Tsukuba, Tsukuba, Japan
– sequence: 2
  givenname: Peter
  surname: Ilic
  fullname: Ilic, Peter
  email: peter@tufs.ac.jp
  organization: Center for Global Language & Soc. in Higher Educ., Tokyo Univ. of Foreign Studies, Tokyo, Japan
BookMark eNpNkE9LAzEUxKMo2NZ-AkHyBbYmu8m-5Chlq4WCF3vppbxuXjSyf-omFfrtXbAHT3OY-Q3MTNlN13fE2KMUCymFfVptd7tsXVXVIhcSFkZIrVRxxeYWjNTCilIUSl2zidTaZAoKe8emMX4JkQuh7YTRsjnFRAMPjroUfKgxhb7j2Dkea2xC98FbSp-9i_yAkRwfzbpvjziMwR_i3yf8z_l-4C7EGNrQ4BDSmTtMeM9uPTaR5hedse2qel--Zpu3l_XyeZOFXMmUSe_AkPdeOSAPigQ4BTnI0vpSA-beaQOmVobQQlk7R1TUIPUBcRwExYw9_PUGItofh9DicN5fXil-AVEJXD0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FUZZ-IEEE.2017.8015443
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509060344
1509060340
EISSN 1558-4739
EndPage 6
ExternalDocumentID 8015443
Genre orig-research
GroupedDBID -~X
29I
6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i241t-1fd78efff4d7ef74e07d4727169f657a2fd5878c48ea976cddee3c715baa02073
IEDL.DBID RIE
IngestDate Wed Aug 27 02:07:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-1fd78efff4d7ef74e07d4727169f657a2fd5878c48ea976cddee3c715baa02073
PageCount 6
ParticipantIDs ieee_primary_8015443
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle IEEE International Fuzzy Systems conference proceedings
PublicationTitleAbbrev FUZZ-IEEE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020059
Score 1.995327
Snippet This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 3-way dissimilarity data
Analytical models
Data models
Data structures
dissimilarity data
fuzzy cluster
Mathematical model
multidimensional scaling
Object recognition
Principal component analysis
Symmetric matrices
Title Cluster identification and scaling methods based on comparative quantification for dissimilarity data
URI https://ieeexplore.ieee.org/document/8015443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLW2nTgN2BDfyoEj7dY2bbLzxDQhDXFg0rTLlCaOVAEdsPbCr8dpuw0QB25VKzeR3cZ28p4NcDOUmr6CMPWUSBKPx1a5jSb0rBShsVGobMVynT0k0zm_X8SLFtzuuDCIWIHP0HeX1Vm-WevSbZUNZNUyK2pDmxK3mqu1S64ci7JhAAfD0WAyXy49ly859JbwG8kfLVQqDzLpwmw7dg0cefbLIvX156-yjP-d3CH091w99rjzQkfQwvwYuttmDaz5d3uA45fSFUVgmWkAQpVNmMoN25ChSJjV7aQ3zLk2w-ih3tcGZ--l-i5HwS5zh_nZa0bJMcXyzIFN-zCf3D2Np17TY8HLyHcXXmCNkGit5UagFRyHwnCKaYJkZJNYqNCaWAqpuURFkYum1RAjLYI4VYqULqIT6OTrHE-BWS0DHcb0kgS54lbp1ERKWi4TWsWsPoOe09rqrS6jsWoUdv737Qs4cJarkbGX0Ck-Srwi_1-k15XhvwDoBbQK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BoC2233eVMJKhAPEBCuJDtPpJGLSrtxV_vbFtAjQdvTZtpm5ndnZnd75sBuOlwiaPAjx3BosihoRF2o0k7hjNfmcAXpmC5jsbRYEofZuGsBrcbLozWugCfaddeFmf5ailzu1XW5kXLrGAHdtHv027J1tqkV5ZHWXGAvU633Z_O547NmCx-i7mV7I8mKoUP6TdgtP56CR15dvMsduXnr8KM__29A2ht2XrkaeOHDqGm0yNorNs1kGr2NkH3XnJbFoEkqoIIFVYhIlVkhaZCYVI2lF4R69wUwYdyWx2cvOfiuxyGu8Qe5yevCabHGM0TCzdtwbR_N-kNnKrLgpOg984czyjGtTGGKqYNo7rDFMWoxou6JgqZ8I0KOeOSci0wdpG4HupAMi-MhUCls-AY6uky1SdAjOSe9EN8SaSpoEbIWAWCG8ojXMeMPIWm1drirSyksagUdvb37WvYG0xGw8Xwfvx4DvvWiiVO9gLq2UeuLzEayOKrYhB8AYObt1o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Fuzzy+Systems+conference+proceedings&rft.atitle=Cluster+identification+and+scaling+methods+based+on+comparative+quantification+for+dissimilarity+data&rft.au=Sato-Ilic%2C+Mika&rft.au=Ilic%2C+Peter&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=1558-4739&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFUZZ-IEEE.2017.8015443&rft.externalDocID=8015443