Cluster identification and scaling methods based on comparative quantification for dissimilarity data
This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obt...
Saved in:
Published in | IEEE International Fuzzy Systems conference proceedings pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1558-4739 |
DOI | 10.1109/FUZZ-IEEE.2017.8015443 |
Cover
Loading…
Abstract | This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obtain the quantitative amount of relationship between a pair of clusters or relationship between a cluster and a basis which spans a subspace constructed a scale. The merits of these methods are that we can obtain "comparability" of obtained clusters over times (or subjects) and supply an "adaptable scale" for observed dissimilarity between a pair of objects, in order to reduce the number of dimensions of the observed data and explain the dissimilarity relationships among objects in the lower dimensional subspace. Numerical examples to investigate the educational effectiveness by using the cognitive 3-way dissimilarity data of students demonstrate a better performance for the proposed methods. |
---|---|
AbstractList | This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is the cluster scaling method for dissimilarity data among objects. Both methods are based on the comparative quantification model which can obtain the quantitative amount of relationship between a pair of clusters or relationship between a cluster and a basis which spans a subspace constructed a scale. The merits of these methods are that we can obtain "comparability" of obtained clusters over times (or subjects) and supply an "adaptable scale" for observed dissimilarity between a pair of objects, in order to reduce the number of dimensions of the observed data and explain the dissimilarity relationships among objects in the lower dimensional subspace. Numerical examples to investigate the educational effectiveness by using the cognitive 3-way dissimilarity data of students demonstrate a better performance for the proposed methods. |
Author | Sato-Ilic, Mika Ilic, Peter |
Author_xml | – sequence: 1 givenname: Mika surname: Sato-Ilic fullname: Sato-Ilic, Mika email: mika@risk.tsukuba.ac.jp organization: Fac. of Eng., Inf. & Syst., Univ. of Tsukuba, Tsukuba, Japan – sequence: 2 givenname: Peter surname: Ilic fullname: Ilic, Peter email: peter@tufs.ac.jp organization: Center for Global Language & Soc. in Higher Educ., Tokyo Univ. of Foreign Studies, Tokyo, Japan |
BookMark | eNpNkE9LAzEUxKMo2NZ-AkHyBbYmu8m-5Chlq4WCF3vppbxuXjSyf-omFfrtXbAHT3OY-Q3MTNlN13fE2KMUCymFfVptd7tsXVXVIhcSFkZIrVRxxeYWjNTCilIUSl2zidTaZAoKe8emMX4JkQuh7YTRsjnFRAMPjroUfKgxhb7j2Dkea2xC98FbSp-9i_yAkRwfzbpvjziMwR_i3yf8z_l-4C7EGNrQ4BDSmTtMeM9uPTaR5hedse2qel--Zpu3l_XyeZOFXMmUSe_AkPdeOSAPigQ4BTnI0vpSA-beaQOmVobQQlk7R1TUIPUBcRwExYw9_PUGItofh9DicN5fXil-AVEJXD0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/FUZZ-IEEE.2017.8015443 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781509060344 1509060340 |
EISSN | 1558-4739 |
EndPage | 6 |
ExternalDocumentID | 8015443 |
Genre | orig-research |
GroupedDBID | -~X 29I 6IE 6IH 6IK 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i241t-1fd78efff4d7ef74e07d4727169f657a2fd5878c48ea976cddee3c715baa02073 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:07:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-1fd78efff4d7ef74e07d4727169f657a2fd5878c48ea976cddee3c715baa02073 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8015443 |
PublicationCentury | 2000 |
PublicationDate | 2017-07 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07 |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Fuzzy Systems conference proceedings |
PublicationTitleAbbrev | FUZZ-IEEE |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020059 |
Score | 1.995327 |
Snippet | This paper proposes two methods. One is the cluster identification method for 3-way dissimilarity data among objects over times (or subjects) and the other is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | 3-way dissimilarity data Analytical models Data models Data structures dissimilarity data fuzzy cluster Mathematical model multidimensional scaling Object recognition Principal component analysis Symmetric matrices |
Title | Cluster identification and scaling methods based on comparative quantification for dissimilarity data |
URI | https://ieeexplore.ieee.org/document/8015443 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLW2nTgN2BDfyoEj7dY2bbLzxDQhDXFg0rTLlCaOVAEdsPbCr8dpuw0QB25VKzeR3cZ28p4NcDOUmr6CMPWUSBKPx1a5jSb0rBShsVGobMVynT0k0zm_X8SLFtzuuDCIWIHP0HeX1Vm-WevSbZUNZNUyK2pDmxK3mqu1S64ci7JhAAfD0WAyXy49ly859JbwG8kfLVQqDzLpwmw7dg0cefbLIvX156-yjP-d3CH091w99rjzQkfQwvwYuttmDaz5d3uA45fSFUVgmWkAQpVNmMoN25ChSJjV7aQ3zLk2w-ih3tcGZ--l-i5HwS5zh_nZa0bJMcXyzIFN-zCf3D2Np17TY8HLyHcXXmCNkGit5UagFRyHwnCKaYJkZJNYqNCaWAqpuURFkYum1RAjLYI4VYqULqIT6OTrHE-BWS0DHcb0kgS54lbp1ERKWi4TWsWsPoOe09rqrS6jsWoUdv737Qs4cJarkbGX0Ck-Srwi_1-k15XhvwDoBbQK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BoC2233eVMJKhAPEBCuJDtPpJGLSrtxV_vbFtAjQdvTZtpm5ndnZnd75sBuOlwiaPAjx3BosihoRF2o0k7hjNfmcAXpmC5jsbRYEofZuGsBrcbLozWugCfaddeFmf5ailzu1XW5kXLrGAHdtHv027J1tqkV5ZHWXGAvU633Z_O547NmCx-i7mV7I8mKoUP6TdgtP56CR15dvMsduXnr8KM__29A2ht2XrkaeOHDqGm0yNorNs1kGr2NkH3XnJbFoEkqoIIFVYhIlVkhaZCYVI2lF4R69wUwYdyWx2cvOfiuxyGu8Qe5yevCabHGM0TCzdtwbR_N-kNnKrLgpOg984czyjGtTGGKqYNo7rDFMWoxou6JgqZ8I0KOeOSci0wdpG4HupAMi-MhUCls-AY6uky1SdAjOSe9EN8SaSpoEbIWAWCG8ojXMeMPIWm1drirSyksagUdvb37WvYG0xGw8Xwfvx4DvvWiiVO9gLq2UeuLzEayOKrYhB8AYObt1o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Fuzzy+Systems+conference+proceedings&rft.atitle=Cluster+identification+and+scaling+methods+based+on+comparative+quantification+for+dissimilarity+data&rft.au=Sato-Ilic%2C+Mika&rft.au=Ilic%2C+Peter&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=1558-4739&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFUZZ-IEEE.2017.8015443&rft.externalDocID=8015443 |