Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning

We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption tha...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 52 - 60
Main Authors Casajus, Pedro Hermosilla, Ritschel, Tobias, Ropinski, Timo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption that a noisy pixel observation is a random realization of a distribution around a clean pixel value, which allows appropriate learning on this distribution to eventually converge to the correct value. Regrettably, this assumption is not valid for unstructured points: 3D point clouds are subject to total noise, i.e. deviations in all coordinates, with no reliable pixel grid. Thus, an observation can be the realization of an entire manifold of clean 3D points, which makes the quality of a naïve extension of unsupervised image denoisers to 3D point clouds unfortunately only little better than mean filtering. To overcome this, and to enable effective and unsupervised 3D point cloud denoising, we introduce a spatial prior term, that steers converges to the unique closest out of the many possible modes on the manifold. Our results demonstrate unsupervised denoising performance similar to that of supervised learning with clean data when given enough training examples - whereby we do not need any pairs of noisy and clean training data.
AbstractList We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption that a noisy pixel observation is a random realization of a distribution around a clean pixel value, which allows appropriate learning on this distribution to eventually converge to the correct value. Regrettably, this assumption is not valid for unstructured points: 3D point clouds are subject to total noise, i.e. deviations in all coordinates, with no reliable pixel grid. Thus, an observation can be the realization of an entire manifold of clean 3D points, which makes the quality of a naïve extension of unsupervised image denoisers to 3D point clouds unfortunately only little better than mean filtering. To overcome this, and to enable effective and unsupervised 3D point cloud denoising, we introduce a spatial prior term, that steers converges to the unique closest out of the many possible modes on the manifold. Our results demonstrate unsupervised denoising performance similar to that of supervised learning with clean data when given enough training examples - whereby we do not need any pairs of noisy and clean training data.
Author Ropinski, Timo
Ritschel, Tobias
Casajus, Pedro Hermosilla
Author_xml – sequence: 1
  givenname: Pedro Hermosilla
  surname: Casajus
  fullname: Casajus, Pedro Hermosilla
  organization: Ulm University
– sequence: 2
  givenname: Tobias
  surname: Ritschel
  fullname: Ritschel, Tobias
  organization: UCL
– sequence: 3
  givenname: Timo
  surname: Ropinski
  fullname: Ropinski, Timo
  organization: Ulm University
BookMark eNotjM1Kw0AURkdRsK1du3AzL5B4Z-4kueOupP4UAgpWt2WS3MhInZRMKvj2RnTzHTgHvrk4C31gIa4UpEqBvdmU5VuqQdkUAJQ5EUtbkCo0KUOAdCpmGgmSIgNzIeYxfgCg1ZTPxGrbj24v1xx6H314v5WvIR4PPHz5yK2s2A1h0rLvJK7lc-_DKMt9f2ynZfebLsV55_aRl_9ciJf7u235mFRPD5tyVSVeGzUmCkyR5aqpuWkMKmw0a9M6RMOYdwxkiFRXOMaWMp4q1khMtc06NoALcf336pl5dxj8pxu-dxaANFn8AXa9Sdk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2019.00014
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728148038
1728148030
EISSN 2380-7504
EndPage 60
ExternalDocumentID 9008289
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-1047561cbecc4313c2e24da334e36fe084881f7ae3d85ec2e3b38e8b95fe403
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-1047561cbecc4313c2e24da334e36fe084881f7ae3d85ec2e3b38e8b95fe403
PageCount 9
ParticipantIDs ieee_primary_9008289
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.5207415
Snippet We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas...
SourceID ieee
SourceType Publisher
StartPage 52
SubjectTerms Manifolds
Noise measurement
Noise reduction
Surface cleaning
Three-dimensional displays
Training
Unsupervised learning
Title Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning
URI https://ieeexplore.ieee.org/document/9008289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycGj3dolTRpv0jmmMBm4yW4jTV9lKO3Y2ot_vUnbTREPXkJIAgl5JN9L8r4vADeeiwIlE45UbuwwqZUjue87KKSIlUe5YpY7PHnm4zl7WviLBtzuuTCIWAafYc9my7f8ONOFvSrry1JwTTahaQ5uFVdrt-samA94Ld3jubL_GIavNnDLqlG6lqLz4--UEjpGbZjsOq0iRt57RR719OcvPcb_juoQut8kPTLdw88RNDA9hnbtVZJ6zW47cD_LjINNhphmK3sxcEfm6bZY2z1iaxrWAqtvJEsIHZJptkpzEn5kRWxSVLaqCy-jh1k4duqPE5yVAeTcsfILxi_S1j7GQaB6gAMWK0oZUp6gldAPvEQopHHgo6mlEQ0wiKSfIHPpCbTSLMVTIFxGQaRZLJgeMO2piAmWcKolqkRwJc6gY-djua6UMZb1VJz_XXwBB9YiVSjcJbTyTYFXBtLz6Lq05RfW16F8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjg4126-rNgAQUCIlguJGuezNEsxHZLv71tttAYzx4aZq2SZv30n4v7fu-Atw4NnIUjFtC2qHFhJKW8FzXQi54KB3qSWa4w6Ox15-xx7k7r8DtlguDiHnyGTZNNX_LDxOVmauylsgF18QO7Grcd52CrbU5dzXQ-14p3uPYojXodF5M6pbRo7QNSefH7yk5ePRqMNpMW-SMvDWzNGiqz1-KjP9d1wE0vml6ZLIFoEOoYHwEtTKuJOWuXdfhfproEJt0MU6W5mrgjszidbYyp8RaDywlVl9JEhHaJZNkGaek855koS5Rmq4GPPcepp2-VX6dYC01JKeWEWDQkZEyHtIhAlVtbLNQUsqQehEaEX3fibhEGvou6l4aUB_9QLgRMpseQzVOYjwB4onADxQLOVNtphwZMM4ijyqBMuKe5KdQN_ZYrAptjEVpirO_m69hrz8dDRfDwfjpHPaNd4rEuAuoph8ZXmqAT4Or3K9fdQCkxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Total+Denoising%3A+Unsupervised+Learning+of+3D+Point+Cloud+Cleaning&rft.au=Casajus%2C+Pedro+Hermosilla&rft.au=Ritschel%2C+Tobias&rft.au=Ropinski%2C+Timo&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1109%2FICCV.2019.00014&rft.externalDocID=9008289