Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning
We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption tha...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 52 - 60 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption that a noisy pixel observation is a random realization of a distribution around a clean pixel value, which allows appropriate learning on this distribution to eventually converge to the correct value. Regrettably, this assumption is not valid for unstructured points: 3D point clouds are subject to total noise, i.e. deviations in all coordinates, with no reliable pixel grid. Thus, an observation can be the realization of an entire manifold of clean 3D points, which makes the quality of a naïve extension of unsupervised image denoisers to 3D point clouds unfortunately only little better than mean filtering. To overcome this, and to enable effective and unsupervised 3D point cloud denoising, we introduce a spatial prior term, that steers converges to the unique closest out of the many possible modes on the manifold. Our results demonstrate unsupervised denoising performance similar to that of supervised learning with clean data when given enough training examples - whereby we do not need any pairs of noisy and clean training data. |
---|---|
AbstractList | We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption that a noisy pixel observation is a random realization of a distribution around a clean pixel value, which allows appropriate learning on this distribution to eventually converge to the correct value. Regrettably, this assumption is not valid for unstructured points: 3D point clouds are subject to total noise, i.e. deviations in all coordinates, with no reliable pixel grid. Thus, an observation can be the realization of an entire manifold of clean 3D points, which makes the quality of a naïve extension of unsupervised image denoisers to 3D point clouds unfortunately only little better than mean filtering. To overcome this, and to enable effective and unsupervised 3D point cloud denoising, we introduce a spatial prior term, that steers converges to the unique closest out of the many possible modes on the manifold. Our results demonstrate unsupervised denoising performance similar to that of supervised learning with clean data when given enough training examples - whereby we do not need any pairs of noisy and clean training data. |
Author | Ropinski, Timo Ritschel, Tobias Casajus, Pedro Hermosilla |
Author_xml | – sequence: 1 givenname: Pedro Hermosilla surname: Casajus fullname: Casajus, Pedro Hermosilla organization: Ulm University – sequence: 2 givenname: Tobias surname: Ritschel fullname: Ritschel, Tobias organization: UCL – sequence: 3 givenname: Timo surname: Ropinski fullname: Ropinski, Timo organization: Ulm University |
BookMark | eNotjM1Kw0AURkdRsK1du3AzL5B4Z-4kueOupP4UAgpWt2WS3MhInZRMKvj2RnTzHTgHvrk4C31gIa4UpEqBvdmU5VuqQdkUAJQ5EUtbkCo0KUOAdCpmGgmSIgNzIeYxfgCg1ZTPxGrbj24v1xx6H314v5WvIR4PPHz5yK2s2A1h0rLvJK7lc-_DKMt9f2ynZfebLsV55_aRl_9ciJf7u235mFRPD5tyVSVeGzUmCkyR5aqpuWkMKmw0a9M6RMOYdwxkiFRXOMaWMp4q1khMtc06NoALcf336pl5dxj8pxu-dxaANFn8AXa9Sdk |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2019.00014 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728148038 1728148030 |
EISSN | 2380-7504 |
EndPage | 60 |
ExternalDocumentID | 9008289 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i241t-1047561cbecc4313c2e24da334e36fe084881f7ae3d85ec2e3b38e8b95fe403 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i241t-1047561cbecc4313c2e24da334e36fe084881f7ae3d85ec2e3b38e8b95fe403 |
PageCount | 9 |
ParticipantIDs | ieee_primary_9008289 |
PublicationCentury | 2000 |
PublicationDate | 2019-Oct. |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-Oct. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.5207415 |
Snippet | We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 52 |
SubjectTerms | Manifolds Noise measurement Noise reduction Surface cleaning Three-dimensional displays Training Unsupervised learning |
Title | Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning |
URI | https://ieeexplore.ieee.org/document/9008289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_ycGj3dolTRpv0jmmMBm4yW4jTV9lKO3Y2ot_vUnbTREPXkJIAgl5JN9L8r4vADeeiwIlE45UbuwwqZUjue87KKSIlUe5YpY7PHnm4zl7WviLBtzuuTCIWAafYc9my7f8ONOFvSrry1JwTTahaQ5uFVdrt-samA94Ld3jubL_GIavNnDLqlG6lqLz4--UEjpGbZjsOq0iRt57RR719OcvPcb_juoQut8kPTLdw88RNDA9hnbtVZJ6zW47cD_LjINNhphmK3sxcEfm6bZY2z1iaxrWAqtvJEsIHZJptkpzEn5kRWxSVLaqCy-jh1k4duqPE5yVAeTcsfILxi_S1j7GQaB6gAMWK0oZUp6gldAPvEQopHHgo6mlEQ0wiKSfIHPpCbTSLMVTIFxGQaRZLJgeMO2piAmWcKolqkRwJc6gY-djua6UMZb1VJz_XXwBB9YiVSjcJbTyTYFXBtLz6Lq05RfW16F8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjg4126-rNgAQUCIlguJGuezNEsxHZLv71tttAYzx4aZq2SZv30n4v7fu-Atw4NnIUjFtC2qHFhJKW8FzXQi54KB3qSWa4w6Ox15-xx7k7r8DtlguDiHnyGTZNNX_LDxOVmauylsgF18QO7Grcd52CrbU5dzXQ-14p3uPYojXodF5M6pbRo7QNSefH7yk5ePRqMNpMW-SMvDWzNGiqz1-KjP9d1wE0vml6ZLIFoEOoYHwEtTKuJOWuXdfhfproEJt0MU6W5mrgjszidbYyp8RaDywlVl9JEhHaJZNkGaek855koS5Rmq4GPPcepp2-VX6dYC01JKeWEWDQkZEyHtIhAlVtbLNQUsqQehEaEX3fibhEGvou6l4aUB_9QLgRMpseQzVOYjwB4onADxQLOVNtphwZMM4ijyqBMuKe5KdQN_ZYrAptjEVpirO_m69hrz8dDRfDwfjpHPaNd4rEuAuoph8ZXmqAT4Or3K9fdQCkxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Total+Denoising%3A+Unsupervised+Learning+of+3D+Point+Cloud+Cleaning&rft.au=Casajus%2C+Pedro+Hermosilla&rft.au=Ritschel%2C+Tobias&rft.au=Ropinski%2C+Timo&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1109%2FICCV.2019.00014&rft.externalDocID=9008289 |