Exploiting Multiple EEG Data Domains with Adversarial Learning

Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and expe...

Full description

Saved in:
Bibliographic Details
Published in2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) pp. 3154 - 3158
Main Authors Bethge, David, Hallgarten, Philipp, Ozdenizci, Ozan, Mikut, Ralf, Schmidt, Albrecht, Grosse-Puppendahl, Tobias
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2022
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC48229.2022.9871743

Cover

Abstract Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and experimental setup used, (i.e. domain). This leads to machine learning models often suffer from poor generalization ability, where they perform significantly worse on real-world data than on the exploited training data. Recent research heavily focuses on cross-subject and cross-session transfer learning frameworks to reduce domain calibration efforts for EEG signals. We argue that multi-source learning via learning domain-invariant representations from multiple data-sources is a viable alternative, as the available data from different EEG data-source domains (e.g., subjects, sessions, experimental setups) grow massively. We propose an adversarial inference approach to learn data-source invariant representations in this context, enabling multi-source learning for EEG-based brain- computer interfaces. We unify EEG recordings from different source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP, DREAMER), and demonstrate the feasibility of our invariant representation learning approach in suppressing data- source-relevant information leakage by 35% while still achieving stable EEG-based emotion classification performance.
AbstractList Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and experimental setup used, (i.e. domain). This leads to machine learning models often suffer from poor generalization ability, where they perform significantly worse on real-world data than on the exploited training data. Recent research heavily focuses on cross-subject and cross-session transfer learning frameworks to reduce domain calibration efforts for EEG signals. We argue that multi-source learning via learning domain-invariant representations from multiple data-sources is a viable alternative, as the available data from different EEG data-source domains (e.g., subjects, sessions, experimental setups) grow massively. We propose an adversarial inference approach to learn data-source invariant representations in this context, enabling multi-source learning for EEG-based brain- computer interfaces. We unify EEG recordings from different source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP, DREAMER), and demonstrate the feasibility of our invariant representation learning approach in suppressing data- source-relevant information leakage by 35% while still achieving stable EEG-based emotion classification performance.
Author Schmidt, Albrecht
Hallgarten, Philipp
Grosse-Puppendahl, Tobias
Ozdenizci, Ozan
Mikut, Ralf
Bethge, David
Author_xml – sequence: 1
  givenname: David
  surname: Bethge
  fullname: Bethge, David
  organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany
– sequence: 2
  givenname: Philipp
  surname: Hallgarten
  fullname: Hallgarten, Philipp
  email: philipp.hallgarten1@porsche.de
  organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany
– sequence: 3
  givenname: Ozan
  surname: Ozdenizci
  fullname: Ozdenizci, Ozan
  organization: Institute of Theoretical Computer Science,TU Graz,Austria
– sequence: 4
  givenname: Ralf
  surname: Mikut
  fullname: Mikut, Ralf
  organization: Karlsruhe Institute of Technology,Karlsruhe,Germany
– sequence: 5
  givenname: Albrecht
  surname: Schmidt
  fullname: Schmidt, Albrecht
  organization: Ludwig-Maximilians University,Munich,Germany
– sequence: 6
  givenname: Tobias
  surname: Grosse-Puppendahl
  fullname: Grosse-Puppendahl, Tobias
  organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany
BookMark eNotj81Kw0AURkdRsK19AkHmBRJn7vxvhJrGKqS40XW5SW50IE1DEv_e3oJdfatzON-cXXSHjhi7lSKVUoS7fPuQaQ8QUhAAafBOOq3O2Fw68BKcB3XOZmCDToQV-ootxzGWwiijTQA1Y_f5T98e4hS7d779bKfYt8TzfMPXOCFfH_YYu5F_x-mDr-ovGkYcIra8IBy6I3PNLhtsR1qedsHeHvPX7CkpXjbP2apIIig7JdAgBEXCKbKugSpIpdFLXRoD2loly5qCJ40GK4MqSHlstx6pKkXdOKMW7ObfG4lo1w9xj8Pv7nRX_QHAo0q7
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/EMBC48229.2022.9871743
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728127823
9781728127828
EISSN 2694-0604
EndPage 3158
ExternalDocumentID 9871743
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i236t-2fa293e073e67f2c9134a814b55246631bde98e4a5ac5a391112768aecb0df753
IEDL.DBID RIE
IngestDate Wed Aug 27 02:18:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i236t-2fa293e073e67f2c9134a814b55246631bde98e4a5ac5a391112768aecb0df753
PageCount 5
ParticipantIDs ieee_primary_9871743
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
ssib058575407
Score 1.8311949
Snippet Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG...
SourceID ieee
SourceType Publisher
StartPage 3154
SubjectTerms adversariallearning
Brain modeling
domain invariance
EEG
Electroencephalography
Emotion recognition
Soft sensors
Training
Training data
Transfer learning
Title Exploiting Multiple EEG Data Domains with Adversarial Learning
URI https://ieeexplore.ieee.org/document/9871743
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhxmviRJgsDJaVCKmKgUrfq7DioQqSIpgu_nrOTloIY2CwPlh9n333n7-4IuYpR61spYob3CBg-eIKlIiwYRFrpYmBEbDzL9zEeT-XDTM1a5HobC2Ot9eQzG7im_8vPl2btXGV9xMfOgG6TNopZHau1kR3JEeft5ElRAk2DHWigXCVKBC9NkHAUpv1scjuULt85okTOg2bwH1VWvJIZ7ZPJZno1t-Q1WFc6MJ-_Mjf-d_4HpPcdzkeftorqkLRs2SU3nn23cKxnOmlYhTTL7ukdVEDvlm-wKFfUuWmpL9q8AieqtMnH-tIj01H2PByzppgCW3ARV4wXgAdh8UbbeFBw437cIYmkVgq3LhaRzm2aWAkKjALh3kCOUASs0WFeIKg5Ip1yWdpjQsMUQh1FZoDgRybKaLQCcgMiFzZPuNAnpOvWPn-v82XMm2Wf_t19Rvbc_tdujXPSqT7W9gIVfaUv_Ql_ASm4oyE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRtIk_0mRhoA0UaCqGVupW2Y6DKkSKaLrw6zknaSmIgS2KoiiXs31-53fvAK58jPqGM9_BeSQdXPCYEzI3daSnhEo7mvm6YPkO_f6YP07EpAbX61oYY0xBPjMte1mc5SdzvbSpsjbiY7uB3oJtjPtclNVaq9HDKSK9DaUUwfCRDXAgbC9KhC9VmbDnhu0ovu1yq3iOOJHSVvX6H31WijBztwfx6gNLdslra5mrlv78pd34Xwv2ofld0Eee16HqAGoma8BNwb-bWd4ziSteIYmie9KTuSS9-ZucZQtiE7WkaNu8kHawkkqR9aUJ47to1O07VTsFZ0aZnzs0legKg3Pa-J2UanvmLgOPKyHw1_nMU4kJA8OlkFpIZldBimBEGq3cJEVYcwj1bJ6ZIyBuKF3lebqD8IcHQivcByRasoSZJKBMHUPD2j59LxUzppXZJ3_fvoSd_igeTAcPw6dT2LW-KJMcZ1DPP5bmHMN-ri4Kb38B6ummbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+44th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Exploiting+Multiple+EEG+Data+Domains+with+Adversarial+Learning&rft.au=Bethge%2C+David&rft.au=Hallgarten%2C+Philipp&rft.au=Ozdenizci%2C+Ozan&rft.au=Mikut%2C+Ralf&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=3154&rft.epage=3158&rft_id=info:doi/10.1109%2FEMBC48229.2022.9871743&rft.externalDocID=9871743