Exploiting Multiple EEG Data Domains with Adversarial Learning
Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and expe...
Saved in:
Published in | 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) pp. 3154 - 3158 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2694-0604 |
DOI | 10.1109/EMBC48229.2022.9871743 |
Cover
Abstract | Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and experimental setup used, (i.e. domain). This leads to machine learning models often suffer from poor generalization ability, where they perform significantly worse on real-world data than on the exploited training data. Recent research heavily focuses on cross-subject and cross-session transfer learning frameworks to reduce domain calibration efforts for EEG signals. We argue that multi-source learning via learning domain-invariant representations from multiple data-sources is a viable alternative, as the available data from different EEG data-source domains (e.g., subjects, sessions, experimental setups) grow massively. We propose an adversarial inference approach to learn data-source invariant representations in this context, enabling multi-source learning for EEG-based brain- computer interfaces. We unify EEG recordings from different source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP, DREAMER), and demonstrate the feasibility of our invariant representation learning approach in suppressing data- source-relevant information leakage by 35% while still achieving stable EEG-based emotion classification performance. |
---|---|
AbstractList | Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG signals is challenging, as they suffer from poor signal-to-noise-ratio, are highly subject-dependent, and are bound to the equipment and experimental setup used, (i.e. domain). This leads to machine learning models often suffer from poor generalization ability, where they perform significantly worse on real-world data than on the exploited training data. Recent research heavily focuses on cross-subject and cross-session transfer learning frameworks to reduce domain calibration efforts for EEG signals. We argue that multi-source learning via learning domain-invariant representations from multiple data-sources is a viable alternative, as the available data from different EEG data-source domains (e.g., subjects, sessions, experimental setups) grow massively. We propose an adversarial inference approach to learn data-source invariant representations in this context, enabling multi-source learning for EEG-based brain- computer interfaces. We unify EEG recordings from different source domains (i.e., emotion recognition datasets SEED, SEED-IV, DEAP, DREAMER), and demonstrate the feasibility of our invariant representation learning approach in suppressing data- source-relevant information leakage by 35% while still achieving stable EEG-based emotion classification performance. |
Author | Schmidt, Albrecht Hallgarten, Philipp Grosse-Puppendahl, Tobias Ozdenizci, Ozan Mikut, Ralf Bethge, David |
Author_xml | – sequence: 1 givenname: David surname: Bethge fullname: Bethge, David organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany – sequence: 2 givenname: Philipp surname: Hallgarten fullname: Hallgarten, Philipp email: philipp.hallgarten1@porsche.de organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany – sequence: 3 givenname: Ozan surname: Ozdenizci fullname: Ozdenizci, Ozan organization: Institute of Theoretical Computer Science,TU Graz,Austria – sequence: 4 givenname: Ralf surname: Mikut fullname: Mikut, Ralf organization: Karlsruhe Institute of Technology,Karlsruhe,Germany – sequence: 5 givenname: Albrecht surname: Schmidt fullname: Schmidt, Albrecht organization: Ludwig-Maximilians University,Munich,Germany – sequence: 6 givenname: Tobias surname: Grosse-Puppendahl fullname: Grosse-Puppendahl, Tobias organization: Dr. Ing. h.c. F. Porsche AG,Stuttgartn,Germany |
BookMark | eNotj81Kw0AURkdRsK19AkHmBRJn7vxvhJrGKqS40XW5SW50IE1DEv_e3oJdfatzON-cXXSHjhi7lSKVUoS7fPuQaQ8QUhAAafBOOq3O2Fw68BKcB3XOZmCDToQV-ootxzGWwiijTQA1Y_f5T98e4hS7d779bKfYt8TzfMPXOCFfH_YYu5F_x-mDr-ovGkYcIra8IBy6I3PNLhtsR1qedsHeHvPX7CkpXjbP2apIIig7JdAgBEXCKbKugSpIpdFLXRoD2loly5qCJ40GK4MqSHlstx6pKkXdOKMW7ObfG4lo1w9xj8Pv7nRX_QHAo0q7 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/EMBC48229.2022.9871743 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728127823 9781728127828 |
EISSN | 2694-0604 |
EndPage | 3158 |
ExternalDocumentID | 9871743 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i236t-2fa293e073e67f2c9134a814b55246631bde98e4a5ac5a391112768aecb0df753 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:18:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i236t-2fa293e073e67f2c9134a814b55246631bde98e4a5ac5a391112768aecb0df753 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9871743 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) |
PublicationTitleAbbrev | EMBC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib053545923 ssib042469959 ssib058575407 |
Score | 1.8311949 |
Snippet | Electroencephalography (EEG) is shown to be a valuable data source for evaluating subjects' mental states. However, the interpretation of multi-modal EEG... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3154 |
SubjectTerms | adversariallearning Brain modeling domain invariance EEG Electroencephalography Emotion recognition Soft sensors Training Training data Transfer learning |
Title | Exploiting Multiple EEG Data Domains with Adversarial Learning |
URI | https://ieeexplore.ieee.org/document/9871743 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhxmviRJgsDJaVCKmKgUrfq7DioQqSIpgu_nrOTloIY2CwPlh9n333n7-4IuYpR61spYob3CBg-eIKlIiwYRFrpYmBEbDzL9zEeT-XDTM1a5HobC2Ot9eQzG7im_8vPl2btXGV9xMfOgG6TNopZHau1kR3JEeft5ElRAk2DHWigXCVKBC9NkHAUpv1scjuULt85okTOg2bwH1VWvJIZ7ZPJZno1t-Q1WFc6MJ-_Mjf-d_4HpPcdzkeftorqkLRs2SU3nn23cKxnOmlYhTTL7ukdVEDvlm-wKFfUuWmpL9q8AieqtMnH-tIj01H2PByzppgCW3ARV4wXgAdh8UbbeFBw437cIYmkVgq3LhaRzm2aWAkKjALh3kCOUASs0WFeIKg5Ip1yWdpjQsMUQh1FZoDgRybKaLQCcgMiFzZPuNAnpOvWPn-v82XMm2Wf_t19Rvbc_tdujXPSqT7W9gIVfaUv_Ql_ASm4oyE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRtIk_0mRhoA0UaCqGVupW2Y6DKkSKaLrw6zknaSmIgS2KoiiXs31-53fvAK58jPqGM9_BeSQdXPCYEzI3daSnhEo7mvm6YPkO_f6YP07EpAbX61oYY0xBPjMte1mc5SdzvbSpsjbiY7uB3oJtjPtclNVaq9HDKSK9DaUUwfCRDXAgbC9KhC9VmbDnhu0ovu1yq3iOOJHSVvX6H31WijBztwfx6gNLdslra5mrlv78pd34Xwv2ofld0Eee16HqAGoma8BNwb-bWd4ziSteIYmie9KTuSS9-ZucZQtiE7WkaNu8kHawkkqR9aUJ47to1O07VTsFZ0aZnzs0legKg3Pa-J2UanvmLgOPKyHw1_nMU4kJA8OlkFpIZldBimBEGq3cJEVYcwj1bJ6ZIyBuKF3lebqD8IcHQivcByRasoSZJKBMHUPD2j59LxUzppXZJ3_fvoSd_igeTAcPw6dT2LW-KJMcZ1DPP5bmHMN-ri4Kb38B6ummbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+44th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society+%28EMBC%29&rft.atitle=Exploiting+Multiple+EEG+Data+Domains+with+Adversarial+Learning&rft.au=Bethge%2C+David&rft.au=Hallgarten%2C+Philipp&rft.au=Ozdenizci%2C+Ozan&rft.au=Mikut%2C+Ralf&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=3154&rft.epage=3158&rft_id=info:doi/10.1109%2FEMBC48229.2022.9871743&rft.externalDocID=9871743 |