Accurate estimation of joint motion trajectories for rehabilitation using Kinect

Kinect as an effective tool for clinical assessment and rehabilitation, suffers from drawbacks of lower accuracy of measuring human body kinematic data when compared to clinical gold standard motion capture devices. The accuracy of time-varying 3D locations of a fixed number of body joints obtained...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.) Vol. 2017; pp. 3864 - 3867
Main Authors Sinha, Sanjana, Bhowmick, Brojeshwar, Sinha, Aniruddha, Das, Abhijit
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Kinect as an effective tool for clinical assessment and rehabilitation, suffers from drawbacks of lower accuracy of measuring human body kinematic data when compared to clinical gold standard motion capture devices. The accuracy of time-varying 3D locations of a fixed number of body joints obtained from Kinect skeletal tracking utility is affected by the presence of noise and precision limits of the Kinect depth sensor. In this paper, a framework for improving accuracy of Kinect skeletal tracking is proposed, that uses a set of parametric models to represent and track the human body. Each of the models represents the 3D geometric properties of a body segment connecting two adjacent joints. The temporal trajectories of the joints are recovered via particle filter-based motion tracking of each model. The proposed method was evaluated on Active Range of Motion exercises by 7 healthy subjects. The joint motion trajectories obtained using the proposed framework exhibit a greater motion smoothness (by 36%) along with reduced coefficient of variation of radius (by 34%), and lower value of root-mean-squared-error (by 53%), when compared to Kinect joint trajectories. This indicates an improvement in accuracy of joint motion trajectories using Kinect device, rendering it more suitable for clinical assessment and rehabilitation.
AbstractList Kinect as an effective tool for clinical assessment and rehabilitation, suffers from drawbacks of lower accuracy of measuring human body kinematic data when compared to clinical gold standard motion capture devices. The accuracy of time-varying 3D locations of a fixed number of body joints obtained from Kinect skeletal tracking utility is affected by the presence of noise and precision limits of the Kinect depth sensor. In this paper, a framework for improving accuracy of Kinect skeletal tracking is proposed, that uses a set of parametric models to represent and track the human body. Each of the models represents the 3D geometric properties of a body segment connecting two adjacent joints. The temporal trajectories of the joints are recovered via particle filter-based motion tracking of each model. The proposed method was evaluated on Active Range of Motion exercises by 7 healthy subjects. The joint motion trajectories obtained using the proposed framework exhibit a greater motion smoothness (by 36%) along with reduced coefficient of variation of radius (by 34%), and lower value of root-mean-squared-error (by 53%), when compared to Kinect joint trajectories. This indicates an improvement in accuracy of joint motion trajectories using Kinect device, rendering it more suitable for clinical assessment and rehabilitation.
Author Das, Abhijit
Sinha, Aniruddha
Sinha, Sanjana
Bhowmick, Brojeshwar
Author_xml – sequence: 1
  givenname: Sanjana
  surname: Sinha
  fullname: Sinha, Sanjana
  email: sanjana.sinha@tcs.com
  organization: TCS Res. & Innovation, Tata Consultancy Services Ltd., Kolkata, India
– sequence: 2
  givenname: Brojeshwar
  surname: Bhowmick
  fullname: Bhowmick, Brojeshwar
  email: b.bhowmick@tcs.com
  organization: TCS Res. & Innovation, Tata Consultancy Services Ltd., Kolkata, India
– sequence: 3
  givenname: Aniruddha
  surname: Sinha
  fullname: Sinha, Aniruddha
  email: aniruddha.s@tcs.com
  organization: TCS Res. & Innovation, Tata Consultancy Services Ltd., Kolkata, India
– sequence: 4
  givenname: Abhijit
  surname: Das
  fullname: Das, Abhijit
  email: abhijit.neuro@gmail.com
  organization: AMRI Inst. of Neurosciences, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29060741$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLA0EQhEeImIf5ASLI_IGN3TO78zjGEB8Y0YOCt7C76dEJyU6YnT3k3xtM9FQU9VF015D1mtAQY1cIE0Swt_OXu9lEAOqJAak1wBkbW22wAAvCgBU9NsCi0Blq-OyzYduuARSqHC9YX1hQoHMcsLdpXXexTMSpTX5bJh8aHhxfB98kvg2_PsVyTXUK0VPLXYg80ndZ-Y1PR75rffPFn31zgC7ZuSs3LY1POmIf9_P32WO2eH14mk0XmRcSU2YLa6RWVmMhpXIyL2HlKjAAAmWlndJVrRSCI-tyoaQtTO20VkqRdGCkHLGbY--uq7a0Wu7i4fq4X_69dgCuj4Anov_4NJb8Af_DXBg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
DOI 10.1109/EMBC.2017.8037700
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509028092
1509028099
EndPage 3867
ExternalDocumentID 29060741
8037700
Genre orig-research
Journal Article
GroupedDBID 29F
29G
6IE
6IH
6IK
6IM
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
NPM
ID FETCH-LOGICAL-i231t-95983769715336f34a0dfb0800213b7f67bc6610fe9f4263958cf77666e3f0833
IEDL.DBID RIE
ISSN 1557-170X
IngestDate Thu Apr 03 07:10:24 EDT 2025
Wed Aug 27 05:59:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i231t-95983769715336f34a0dfb0800213b7f67bc6610fe9f4263958cf77666e3f0833
PMID 29060741
PageCount 4
ParticipantIDs pubmed_primary_29060741
ieee_primary_8037700
PublicationCentury 2000
PublicationDate 2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Conference proceedings (IEEE Engineering in Medicine and Biology Society. Conf.)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0061641
Score 1.7787284
Snippet Kinect as an effective tool for clinical assessment and rehabilitation, suffers from drawbacks of lower accuracy of measuring human body kinematic data when...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 3864
SubjectTerms Motion segmentation
Robot sensing systems
Skeleton
Solid modeling
Three-dimensional displays
Tracking
Trajectory
Title Accurate estimation of joint motion trajectories for rehabilitation using Kinect
URI https://ieeexplore.ieee.org/document/8037700
https://www.ncbi.nlm.nih.gov/pubmed/29060741
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDhsQHjpRw40i6ljzRHmDZNoKEdmLTbtKYJ2pBaVLUXfj120w2YOHCrVDWybKv-7NifAW4RFGDgU_dOQPyXgZCeI0OROGEijEZ_5klKBf3JSzSeBU_zcN6Cu-0sjNa6bj7TLj3Wd_lprioqlfVj7gvBMUHfw8TNzmpt_roRwn7LjRoS6SGfNzeYHpf94eRxQE1cwm0OIAZgFJGiabNUZQdU1sFldAiTjVi2p-TdrcrEVZ87jI3_lfsIut9jfGy6DVDH0NLZCRz8YCDswPRBqYrYIhixbdgxRpYbts5XWcnsih9WFst1XdzHrJohyGXFL3pvRr3zb-wZT1VlF2aj4etg7DRLFpwVQrsSLSMxR42kIOAXGT9Y8tQkNY70fDRYJBKFMZwbLQ2Ru8swVkYIzHq0bxC_-afQzvJMnwPTKk4jsURAZXTg81Qq6ZnYQ0_gJhRB1IMO6WbxYXk0Fo1aenBmdb99sTHOxd8fXMI-WdM2zV5BuywqfY3QoExuap_4AtNVs1A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPKgXH6Dicw8ebdnax3aPSiAolHCAhBuh210DJq0h7cVf72y3oBIP3po03UxmJp1vZme-AbhHUICBTzxanua_9Bh3LO6z2PJjpiT6M40TXdCPRkF_6r3O_FkNHrazMFLKsvlM2vqxvMtPMlHoUlk7pC5jFBP0PYz7vmOmtTb_3QCBv2FH9TXtIZ1Vd5gO5e1u9NzRbVzMro7QHMAopI6n1VqVHVhZhpfeEUQbwUxXybtd5LEtPnc4G_8r-TE0vwf5yHgbok6gJtNTOPzBQdiA8ZMQheaLIJpvwwwykkyRVbZMc2KW_JB8vViV5X3MqwnCXLL-RfBNdPf8GxngqSJvwrTXnXT6VrVmwVoiuMvRNhyz1IAzDf0C5XoLmqi4RJKOiyYLWCwwilMludL07twPhWIM8x7pKkRw7hnU0yyVF0CkCJOALRBSKem5NOGCOyp00Beo8pkXtKChdTP_MEwa80otLTg3ut--2Bjn8u8P7mC_P4mG8-HLaHAFB9qypoX2Gur5upA3CBTy-Lb0jy9gabaZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+%28IEEE+Engineering+in+Medicine+and+Biology+Society.+Conf.%29&rft.atitle=Accurate+estimation+of+joint+motion+trajectories+for+rehabilitation+using+Kinect&rft.au=Sinha%2C+Sanjana&rft.au=Bhowmick%2C+Brojeshwar&rft.au=Sinha%2C+Aniruddha&rft.au=Das%2C+Abhijit&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1557-170X&rft.spage=3864&rft.epage=3867&rft_id=info:doi/10.1109%2FEMBC.2017.8037700&rft_id=info%3Apmid%2F29060741&rft.externalDocID=8037700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon