Distance-informed metric learning for Alzheimer's disease staging

Identifying intermediate biomarkers of Alzheimer's disease (AD) is of great importance for diagnosis and prognosis of the disease. In this study, we develop a new AD staging method to classify patients into Normal Controls (NC), Mild Cognitive Impairment (MCI), and AD groups. Our solution emplo...

Full description

Saved in:
Bibliographic Details
Published in2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2014; pp. 934 - 937
Main Authors Shi, Bibo, Wang, Zhewei, Liu, Jundong
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2014
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2014.6943745

Cover

More Information
Summary:Identifying intermediate biomarkers of Alzheimer's disease (AD) is of great importance for diagnosis and prognosis of the disease. In this study, we develop a new AD staging method to classify patients into Normal Controls (NC), Mild Cognitive Impairment (MCI), and AD groups. Our solution employs a novel metric learning technique that improves classification rates through the guidance of some weak supervisory information in AD progression. More specifically, those information are in the form of pairwise constraints that specify the relative Mini Mental State Examination (MMSE) score disparity of two subjects, depending on whether they are in the same group or not. With the imposed constraints, the common knowledge that MCI generally sits in between of NC and AD can be integrated into the classification distance metric. Subjects from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; 56 AD, 104 MCI, 161 controls) were used to demonstrate the improvements made comparing with two state-of-the-art metric learning solutions: large margin nearest neighbors (LMNN) and relevant component analysis (RCA).
ISSN:1094-687X
1557-170X
DOI:10.1109/EMBC.2014.6943745