Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films
The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towa...
Saved in:
Published in | Surface and interface analysis Vol. 42; no. 6-7; pp. 835 - 841 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towards lower energies. Here, we investigate the structure, chemical composition, bandgap shift and charge transfer processes of Ag@TiO2 core‐shell nanoparticle thin films by field emission scanning electron microscopy, atomic force microscopy, XPS, and UV‐Vis spectroscopy. As a solid support, Au‐coated Si wafers and Si surface covered with a native oxide were used and homogenously covered by Ag@TiO2 core‐shell nanoparticles with overall film thicknesses of 80–100 nm and size distributions between 8 and 15 nm. The shell thickness of the adsorbed Ag@TiO2 particles was estimated to be 1.5‐2.0 nm. The effect of the Ag core on the bandgap of TiO2 and photoinduced charge separation of Ag@TiO2 nanoparticle films was studied by UV‐Vis reflectance spectroscopy using the Kubelka‐Munk formalism. Films of Ag@TiO2 core‐shell nanoparticles revealed a substantially reduced bandgap of 2.75 eV (corresponding to 450 nm), and an electron charge transfer to the Ag core occurring upon UV irradiation on nonconductive surfaces. These features make Ag@TiO2 particulate films a promising candidate for photocatalytic surfaces under sunlight irradiation. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towards lower energies. Here, we investigate the structure, chemical composition, bandgap shift and charge transfer processes of Ag@TiO2 core‐shell nanoparticle thin films by field emission scanning electron microscopy, atomic force microscopy, XPS, and UV‐Vis spectroscopy. As a solid support, Au‐coated Si wafers and Si surface covered with a native oxide were used and homogenously covered by Ag@TiO2 core‐shell nanoparticles with overall film thicknesses of 80–100 nm and size distributions between 8 and 15 nm. The shell thickness of the adsorbed Ag@TiO2 particles was estimated to be 1.5‐2.0 nm. The effect of the Ag core on the bandgap of TiO2 and photoinduced charge separation of Ag@TiO2 nanoparticle films was studied by UV‐Vis reflectance spectroscopy using the Kubelka‐Munk formalism. Films of Ag@TiO2 core‐shell nanoparticles revealed a substantially reduced bandgap of 2.75 eV (corresponding to 450 nm), and an electron charge transfer to the Ag core occurring upon UV irradiation on nonconductive surfaces. These features make Ag@TiO2 particulate films a promising candidate for photocatalytic surfaces under sunlight irradiation. Copyright © 2010 John Wiley & Sons, Ltd. |
Author | Grunze, Michael Bruns, Michael Tunc, Ilknur Koelsch, Patrick Gliemann, Hartmut |
Author_xml | – sequence: 1 givenname: Ilknur surname: Tunc fullname: Tunc, Ilknur organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany – sequence: 2 givenname: Michael surname: Bruns fullname: Bruns, Michael organization: Materials Research III, Karlsruhe Institute of Technology, Hermannvon-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 3 givenname: Hartmut surname: Gliemann fullname: Gliemann, Hartmut organization: Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 4 givenname: Michael surname: Grunze fullname: Grunze, Michael organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany – sequence: 5 givenname: Patrick surname: Koelsch fullname: Koelsch, Patrick email: patrick.koelsch@kit.edu organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany |
BookMark | eNpFkG1LwzAUhYNMcJuCPyF_oDMvTZt-cw73AptDnfgxpOntFm3TkRR0_96WiX46cO7D4dwzQgPXOEDolpIJJYTdBasnXAh5gYaUZEmUZVQO0JDQmEUsZvQKjUL4IIRILpMh2j1oV-z1ERfQgq-t061tHO5MbA7a7wEHOGp_dq3D0_39zm4ZNo3vTgeoKuy0azqktaYCXNqqDtfostRVgJtfHaO3-eNutozW28VqNl1HlnEqIwaUlyyTEOcQl0lRirSQPO3bC5PzUhhIjCgES7ontGYMch6zHJgxXEvD-BhF59wvW8FJHb2ttT8pSlQ_heqmUH2Yel1Ne_3nbWjh-4_X_lMlKU-Fen9aqPnsZfk83yzVhv8AVdRk3g |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. |
DBID | BSCLL |
DOI | 10.1002/sia.3558 |
DatabaseName | Istex |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-9918 |
EndPage | 841 |
ExternalDocumentID | SIA3558 ark_67375_WNG_FCRHQFMH_M |
Genre | article |
GrantInformation_xml | – fundername: BMBF – fundername: Deutsche Forschungsgemeinschaft – fundername: TUBITAK |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ |
ID | FETCH-LOGICAL-i2318-2e13f298e4be4f6df57d83735585cb3f5ce6c5d526991aa22eb342be2cc3a8c23 |
IEDL.DBID | DR2 |
ISSN | 0142-2421 |
IngestDate | Wed Jan 22 16:37:34 EST 2025 Wed Oct 30 09:59:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i2318-2e13f298e4be4f6df57d83735585cb3f5ce6c5d526991aa22eb342be2cc3a8c23 |
Notes | BMBF ArticleID:SIA3558 Paper published as part of the ECASIA 2009 special issue. ark:/67375/WNG-FCRHQFMH-M Deutsche Forschungsgemeinschaft TUBITAK istex:E778B62CBF110DF18759ACAEF14D09564335CBB8 |
PageCount | 7 |
ParticipantIDs | wiley_primary_10_1002_sia_3558_SIA3558 istex_primary_ark_67375_WNG_FCRHQFMH_M |
PublicationCentury | 2000 |
PublicationDate | 2010-06 June ‐ July 2010 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Surface and interface analysis |
PublicationTitleAlternate | Surf. Interface Anal |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | X. Zhang, A. Fujishima, M. J. Alexei, V. Emeline, T. Murakami, J. Phys. Chem. B 2006, 110, 25142. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, J. Electroanal. Chem. 1996, 415, 183. M. P. Seah, S. J. Spencer, Surf. Interface Anal. 2002, 33, 640. Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945. P. V. Kamat, Chem. Rev. 1993, 93, 267. G. G. Fuentes, E. Elizalde, F. Yubero, J. M. Sanz, Surf. Interface Anal. 2002, 33, 230. A. Heller, Acc. Chem. Res. 1995, 28, 503. T. S. Ahmadi, S. L. Logunov, M. A. ElSayed, in Nanostructured Materials, vol. 679, Amer. Chemical Soc., Washington, 1997, pp 125. D. F. Ollis, Enviromental Science and Technology 1985, 19, 480. J. C. Sánchez-López, A. Fernández, Surf. Interface Anal. 1998, 26, 1016. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2000, 16, 2731. K. L. Parry, A. G. Shard, R. G. Short, R. G. White, J. D. Whittle, A. Wright, Surf. Interface Anal. 2006, 38, 1497. I. Tunc, H. O. Gunenc, H. Sezen, S. Suzer, M. A. Correa-Duatre, L. M. Liz-Marzan, J. Nanosci. Technol. 2008, 8, 1. D. I. Garcia-Gutierrez, C. E. Gutierrez-Wing, L. Giovanetti, J. M. Ramallo-Lopez, F. G. Requejo, M. Jose-Yacaman, J. Phys. Chem. B. 2005, 109, 3813. J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129. C. Anderson, A. J. Bard, J. Phys. Chem. B 1997, 101, 2611. V. Trouillet, H. Tröße, M. Bruns, E. Nold, R. G. White, J. Vac. Sci. Technol. 2007, 25, 927. E. M. Fernandez, J. M. Soler, I. L. Garzon, L. C. Balbas, Phys. Rev. B 2004, 70, 165403. T. Kallioa, S. Alajokia, V. Poreb, M. Ritalab, J. Lainea, M. Leskeläb, P. Stenius, Colloids Surf., A Physicochemical and Engineering Aspects 2006, 291, 162. V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943. T. Hirakawa, P. V. Kamat, Langmuir 2004, 20, 5645. M. Fujihira, Y. Satoh, T. Osa, Nature 1981, 293, 206. B. Kraeutler, A. J. Bard, J. Am. Chem. Soc. 1977, 99, 7729. L. Óvári, J. Kiss, Appl. Surf. Sci. 2006, 252, 8624. P. Mulvaney, Langmuir 1996, 12, 788. D. Reyes-Coronado, G. Rodrŕguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 2008, 19, 145605. M. Jakob, H. Levanon, P. V. Kamat, Nano Lett. 2003, 3, 353. P. V. Kamat, J. Phys. Chem. B 2002, 106, 7729. T. Hirakawa, P. V. Kamat, J. Am. Chem. Soc. 2005, 127, 3928. K. Hashimoto, T. Kawai, T. Sakata, J. Phys. Chem. 1984, 88, 4083. H.-Y. Chuang, D.-H. Chen, Nanotechnology 2009, 20, 105704. A. Dawson, P. V. Kamat, J. Phys. Chem. B 2001, 105, 960. B. O. Aronsson, A. Krozer, J. Lausmaa, B. Kasemo, Surf. Sci. Spectra 1997, 4, 42. 1998; 26 2004; 20 2004; 126 2009; 20 2006; 38 1984; 88 2008; 19 2002; 33 1997 2006; 110 2008; 8 2006; 252 2006; 291 2004; 108 1976; 8 1997; 4 1996; 12 2001; 105 1985; 19 1981; 293 2000; 16 2004; 70 1995; 28 1993; 93 2005; 127 1997; 101 2002; 106 2003; 3 2005; 109 1977; 99 1996; 415 2007; 25 |
References_xml | – reference: D. I. Garcia-Gutierrez, C. E. Gutierrez-Wing, L. Giovanetti, J. M. Ramallo-Lopez, F. G. Requejo, M. Jose-Yacaman, J. Phys. Chem. B. 2005, 109, 3813. – reference: V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943. – reference: M. P. Seah, S. J. Spencer, Surf. Interface Anal. 2002, 33, 640. – reference: I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2000, 16, 2731. – reference: T. Hirakawa, P. V. Kamat, Langmuir 2004, 20, 5645. – reference: H.-Y. Chuang, D.-H. Chen, Nanotechnology 2009, 20, 105704. – reference: B. O. Aronsson, A. Krozer, J. Lausmaa, B. Kasemo, Surf. Sci. Spectra 1997, 4, 42. – reference: V. Trouillet, H. Tröße, M. Bruns, E. Nold, R. G. White, J. Vac. Sci. Technol. 2007, 25, 927. – reference: P. Mulvaney, Langmuir 1996, 12, 788. – reference: C. Anderson, A. J. Bard, J. Phys. Chem. B 1997, 101, 2611. – reference: M. Jakob, H. Levanon, P. V. Kamat, Nano Lett. 2003, 3, 353. – reference: T. Kallioa, S. Alajokia, V. Poreb, M. Ritalab, J. Lainea, M. Leskeläb, P. Stenius, Colloids Surf., A Physicochemical and Engineering Aspects 2006, 291, 162. – reference: M. Fujihira, Y. Satoh, T. Osa, Nature 1981, 293, 206. – reference: K. Hashimoto, T. Kawai, T. Sakata, J. Phys. Chem. 1984, 88, 4083. – reference: P. V. Kamat, J. Phys. Chem. B 2002, 106, 7729. – reference: D. Reyes-Coronado, G. Rodrŕguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 2008, 19, 145605. – reference: L. Óvári, J. Kiss, Appl. Surf. Sci. 2006, 252, 8624. – reference: E. M. Fernandez, J. M. Soler, I. L. Garzon, L. C. Balbas, Phys. Rev. B 2004, 70, 165403. – reference: A. Heller, Acc. Chem. Res. 1995, 28, 503. – reference: I. Tunc, H. O. Gunenc, H. Sezen, S. Suzer, M. A. Correa-Duatre, L. M. Liz-Marzan, J. Nanosci. Technol. 2008, 8, 1. – reference: B. Kraeutler, A. J. Bard, J. Am. Chem. Soc. 1977, 99, 7729. – reference: T. S. Ahmadi, S. L. Logunov, M. A. ElSayed, in Nanostructured Materials, vol. 679, Amer. Chemical Soc., Washington, 1997, pp 125. – reference: J. C. Sánchez-López, A. Fernández, Surf. Interface Anal. 1998, 26, 1016. – reference: X. Zhang, A. Fujishima, M. J. Alexei, V. Emeline, T. Murakami, J. Phys. Chem. B 2006, 110, 25142. – reference: K. L. Parry, A. G. Shard, R. G. Short, R. G. White, J. D. Whittle, A. Wright, Surf. Interface Anal. 2006, 38, 1497. – reference: G. G. Fuentes, E. Elizalde, F. Yubero, J. M. Sanz, Surf. Interface Anal. 2002, 33, 230. – reference: D. F. Ollis, Enviromental Science and Technology 1985, 19, 480. – reference: J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129. – reference: P. V. Kamat, Chem. Rev. 1993, 93, 267. – reference: T. Hirakawa, P. V. Kamat, J. Am. Chem. Soc. 2005, 127, 3928. – reference: A. Dawson, P. V. Kamat, J. Phys. Chem. B 2001, 105, 960. – reference: Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945. – reference: I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, J. Electroanal. Chem. 1996, 415, 183. – volume: 126 start-page: 4943 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 480 year: 1985 publication-title: Enviromental Science and Technology – volume: 109 start-page: 3813 year: 2005 publication-title: J. Phys. Chem. B. – volume: 99 start-page: 7729 year: 1977 publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 206 year: 1981 publication-title: Nature – volume: 33 start-page: 640 year: 2002 publication-title: Surf. Interface Anal. – volume: 12 start-page: 788 year: 1996 publication-title: Langmuir – volume: 101 start-page: 2611 year: 1997 publication-title: J. Phys. Chem. B – volume: 19 start-page: 145605 year: 2008 publication-title: Nanotechnology – volume: 20 start-page: 5645 year: 2004 publication-title: Langmuir – volume: 127 start-page: 3928 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 960 year: 2001 publication-title: J. Phys. Chem. B – volume: 8 start-page: 1 year: 2008 publication-title: J. Nanosci. Technol. – volume: 25 start-page: 927 year: 2007 publication-title: J. Vac. Sci. Technol. – volume: 28 start-page: 503 year: 1995 publication-title: Acc. Chem. Res. – volume: 70 start-page: 165403 year: 2004 publication-title: Phys. Rev. B – volume: 110 start-page: 25142 year: 2006 publication-title: J. Phys. Chem. B – volume: 415 start-page: 183 year: 1996 publication-title: J. Electroanal. Chem. – volume: 88 start-page: 4083 year: 1984 publication-title: J. Phys. Chem. – volume: 108 start-page: 945 year: 2004 publication-title: J. Phys. Chem. B – volume: 93 start-page: 267 year: 1993 publication-title: Chem. Rev. – volume: 291 start-page: 162 year: 2006 publication-title: Colloids Surf., A Physicochemical and Engineering Aspects – volume: 3 start-page: 353 year: 2003 publication-title: Nano Lett. – volume: 8 start-page: 129 year: 1976 publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 252 start-page: 8624 year: 2006 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 42 year: 1997 publication-title: Surf. Sci. Spectra – volume: 106 start-page: 7729 year: 2002 publication-title: J. Phys. Chem. B – volume: 38 start-page: 1497 year: 2006 publication-title: Surf. Interface Anal. – volume: 26 start-page: 1016 year: 1998 publication-title: Surf. Interface Anal. – volume: 16 start-page: 2731 year: 2000 publication-title: Langmuir – volume: 33 start-page: 230 year: 2002 publication-title: Surf. Interface Anal. – volume: 20 start-page: 105704 year: 2009 publication-title: Nanotechnology – start-page: 125 year: 1997 |
SSID | ssj0008386 |
Score | 2.2342496 |
Snippet | The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%)... |
SourceID | wiley istex |
SourceType | Publisher |
StartPage | 835 |
SubjectTerms | bandgap charge separation core-shell nanoparticles photocatalytic activity TiO2 |
Title | Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films |
URI | https://api.istex.fr/ark:/67375/WNG-FCRHQFMH-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsia.3558 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4iiL54mYp38iC-dZckvezNOaxV2MS54cCHkqTpKNM61g3EX29Osm7ok_hUCCk9nEt6TvLlOwhdEqodo9ngjiAqcJgK6g6kEQ5VTdlgRHEvgIvCna4XDdjD0B0uUJVwF8byQyw33CAyzHoNAc5FUVuRhhYZrwI3uF5-AaoF-VBvxRwVUNPkURcAxJx6lryzdVIrX9TpKGjy82daav4r4Q56LSWycJJxdT4TVfn1i6zxfyLvou1Fuolb1j_20JrKK2izXXZ5q6ANAwGVxT7q3_A8GfEJTkqEDNgM60Fs6JQULpQlCtejWY5bo-t-9kgw8GDiAvCkOOe5rsHtt3Cavb0XB2gQ3vbbkbPoueBk2kQ6aFSDpqQZKCYUS70kdf1E17AgtSsFTV2pPOkm0JdcW5gTootxRoQiUlIeSEIP0Xr-kasjhBVhnicYIdyVLPEDzv0g9RqJoIIxJcQxujL6jyeWVyPm0zHAzHw3funexWG7Fz2FnSju6IlGq8uJlmqZxFqfMUgWP9-34Hny14mnaMuiAGA35Qytz6Zzda6Ti5m4MG70DYXAyz8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Ivrit_htHsS3TpemXYcvzumsuk3UiXsQQpKmo0zrsBPEv95caif6JD4VwpUeubv27vrL7wD2qGsco1YRjqQ6cJgODh1MIxxX11SFUS38AA8Ktzt-eM8ue15vAo6KszA5P8S44YaRYd_XGODYkD74Zg3NElFGcvBJmMKB3kicf3r7zR0VuHbMoykBqP3vWTDPHtKD4k6TkOJevv9MTO2XpTkPj4VOOaBkUH4bybL6-EXX-E-lF2DuK-Mk9dxFFmFCp0sw0ygGvS3BtEWBqmwZuicijfpiSKICJINmI2aRWEYlTTKdc4Wb1SQl9f5xN7mmBKkwSYaQUpKK1JTh-bNInDw9Zytw3zzrNkLna-yCkxgrmbjRFTemtUAzqVnsR7FXjUwZi1p7Srqxp7SvvAhHkxsjC0pNPc6o1FQpVwSKuqtQSl9SvQZEU-b7klEqPMWiaiBENYj9SiRdyZiWch32rQH4MKfW4OJ1gEizqscfOue82bgNb5rtkLeNoN3WsWDOtky52U-OmvG7izpeN_4quAszYbfd4q2LztUmzOagAGyubEFp9Pqmt02uMZI71qc-AUf2z1s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgiOXCjtjxAXFLaRwnTW6UQghLC5RWVOJg2Y6DIiBUTZEQX4_HaUBwQpwiWRNlNEsy4zy_QWifODowAptbgijfosqvWVBGWI4KpE2J4p4PB4VbbS_q0Yu-2x-jKuEsTMEP8bXhBplh3teQ4IM4OfwmDc1TXgVu8Ek0Rb1aAGMbTjrf1FG-Y6Y86g6AmN-eJfFsjRyWd-p6FEz5_rMuNR-WcAE9lCoVeJKn6ttIVOXHL7bG_-m8iObH9SZuFAGyhCZUtoxmm-WYt2U0bTCgMl9B3WOexY98gOMSIgNOw3oRGz4lhXNVMIXr1TTDjcejbnpNMBBh4hwApTjjmW7Ci2fhJH1-yVdRLzztNiNrPHTBSrWPdNYo20lI4CsqFE28OHHrsW5iQWtXCidxpfKkG8Ngcu1iTojuxikRikjpcF8SZw1VstdMrSOsCPU8QQnhrqRx3ee87ieeHQtHUKqE2EAHxv5sUBBrMD58ApxZ3WX37TMWNjvRbdiKWEsLGqt-CRZcy4RpezLQjN2dN-C6-VfBPTRzcxKyq_P25RaaKxABsLOyjSqj4Zva0YXGSOyaiPoECU3OCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+determination+and+charge+separation+in+Ag%40TiO2+core+shell+nanoparticle+films&rft.jtitle=Surface+and+interface+analysis&rft.au=Tunc%2C+Ilknur&rft.au=Bruns%2C+Michael&rft.au=Gliemann%2C+Hartmut&rft.au=Grunze%2C+Michael&rft.date=2010-06-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0142-2421&rft.eissn=1096-9918&rft.volume=42&rft.issue=6%E2%80%907&rft.spage=835&rft.epage=841&rft_id=info:doi/10.1002%2Fsia.3558&rft.externalDBID=10.1002%252Fsia.3558&rft.externalDocID=SIA3558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-2421&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-2421&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-2421&client=summon |