Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films

The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towa...

Full description

Saved in:
Bibliographic Details
Published inSurface and interface analysis Vol. 42; no. 6-7; pp. 835 - 841
Main Authors Tunc, Ilknur, Bruns, Michael, Gliemann, Hartmut, Grunze, Michael, Koelsch, Patrick
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towards lower energies. Here, we investigate the structure, chemical composition, bandgap shift and charge transfer processes of Ag@TiO2 core‐shell nanoparticle thin films by field emission scanning electron microscopy, atomic force microscopy, XPS, and UV‐Vis spectroscopy. As a solid support, Au‐coated Si wafers and Si surface covered with a native oxide were used and homogenously covered by Ag@TiO2 core‐shell nanoparticles with overall film thicknesses of 80–100 nm and size distributions between 8 and 15 nm. The shell thickness of the adsorbed Ag@TiO2 particles was estimated to be 1.5‐2.0 nm. The effect of the Ag core on the bandgap of TiO2 and photoinduced charge separation of Ag@TiO2 nanoparticle films was studied by UV‐Vis reflectance spectroscopy using the Kubelka‐Munk formalism. Films of Ag@TiO2 core‐shell nanoparticles revealed a substantially reduced bandgap of 2.75 eV (corresponding to 450 nm), and an electron charge transfer to the Ag core occurring upon UV irradiation on nonconductive surfaces. These features make Ag@TiO2 particulate films a promising candidate for photocatalytic surfaces under sunlight irradiation. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%) and the fact that the bandgap of TiO2 is usually greater than 3 eV (below 400 nm), many attempts have been made to shift the bandgap towards lower energies. Here, we investigate the structure, chemical composition, bandgap shift and charge transfer processes of Ag@TiO2 core‐shell nanoparticle thin films by field emission scanning electron microscopy, atomic force microscopy, XPS, and UV‐Vis spectroscopy. As a solid support, Au‐coated Si wafers and Si surface covered with a native oxide were used and homogenously covered by Ag@TiO2 core‐shell nanoparticles with overall film thicknesses of 80–100 nm and size distributions between 8 and 15 nm. The shell thickness of the adsorbed Ag@TiO2 particles was estimated to be 1.5‐2.0 nm. The effect of the Ag core on the bandgap of TiO2 and photoinduced charge separation of Ag@TiO2 nanoparticle films was studied by UV‐Vis reflectance spectroscopy using the Kubelka‐Munk formalism. Films of Ag@TiO2 core‐shell nanoparticles revealed a substantially reduced bandgap of 2.75 eV (corresponding to 450 nm), and an electron charge transfer to the Ag core occurring upon UV irradiation on nonconductive surfaces. These features make Ag@TiO2 particulate films a promising candidate for photocatalytic surfaces under sunlight irradiation. Copyright © 2010 John Wiley & Sons, Ltd.
Author Grunze, Michael
Bruns, Michael
Tunc, Ilknur
Koelsch, Patrick
Gliemann, Hartmut
Author_xml – sequence: 1
  givenname: Ilknur
  surname: Tunc
  fullname: Tunc, Ilknur
  organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany
– sequence: 2
  givenname: Michael
  surname: Bruns
  fullname: Bruns, Michael
  organization: Materials Research III, Karlsruhe Institute of Technology, Hermannvon-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
– sequence: 3
  givenname: Hartmut
  surname: Gliemann
  fullname: Gliemann, Hartmut
  organization: Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
– sequence: 4
  givenname: Michael
  surname: Grunze
  fullname: Grunze, Michael
  organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany
– sequence: 5
  givenname: Patrick
  surname: Koelsch
  fullname: Koelsch, Patrick
  email: patrick.koelsch@kit.edu
  organization: Applied Physical Chemistry, University Heidelberg, 69120 Heidelberg, Germany
BookMark eNpFkG1LwzAUhYNMcJuCPyF_oDMvTZt-cw73AptDnfgxpOntFm3TkRR0_96WiX46cO7D4dwzQgPXOEDolpIJJYTdBasnXAh5gYaUZEmUZVQO0JDQmEUsZvQKjUL4IIRILpMh2j1oV-z1ERfQgq-t061tHO5MbA7a7wEHOGp_dq3D0_39zm4ZNo3vTgeoKuy0azqktaYCXNqqDtfostRVgJtfHaO3-eNutozW28VqNl1HlnEqIwaUlyyTEOcQl0lRirSQPO3bC5PzUhhIjCgES7ontGYMch6zHJgxXEvD-BhF59wvW8FJHb2ttT8pSlQ_heqmUH2Yel1Ne_3nbWjh-4_X_lMlKU-Fen9aqPnsZfk83yzVhv8AVdRk3g
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
DBID BSCLL
DOI 10.1002/sia.3558
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-9918
EndPage 841
ExternalDocumentID SIA3558
ark_67375_WNG_FCRHQFMH_M
Genre article
GrantInformation_xml – fundername: BMBF
– fundername: Deutsche Forschungsgemeinschaft
– fundername: TUBITAK
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
ID FETCH-LOGICAL-i2318-2e13f298e4be4f6df57d83735585cb3f5ce6c5d526991aa22eb342be2cc3a8c23
IEDL.DBID DR2
ISSN 0142-2421
IngestDate Wed Jan 22 16:37:34 EST 2025
Wed Oct 30 09:59:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6-7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2318-2e13f298e4be4f6df57d83735585cb3f5ce6c5d526991aa22eb342be2cc3a8c23
Notes BMBF
ArticleID:SIA3558
Paper published as part of the ECASIA 2009 special issue.
ark:/67375/WNG-FCRHQFMH-M
Deutsche Forschungsgemeinschaft
TUBITAK
istex:E778B62CBF110DF18759ACAEF14D09564335CBB8
PageCount 7
ParticipantIDs wiley_primary_10_1002_sia_3558_SIA3558
istex_primary_ark_67375_WNG_FCRHQFMH_M
PublicationCentury 2000
PublicationDate 2010-06
June ‐ July 2010
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Surface and interface analysis
PublicationTitleAlternate Surf. Interface Anal
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References X. Zhang, A. Fujishima, M. J. Alexei, V. Emeline, T. Murakami, J. Phys. Chem. B 2006, 110, 25142.
I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, J. Electroanal. Chem. 1996, 415, 183.
M. P. Seah, S. J. Spencer, Surf. Interface Anal. 2002, 33, 640.
Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945.
P. V. Kamat, Chem. Rev. 1993, 93, 267.
G. G. Fuentes, E. Elizalde, F. Yubero, J. M. Sanz, Surf. Interface Anal. 2002, 33, 230.
A. Heller, Acc. Chem. Res. 1995, 28, 503.
T. S. Ahmadi, S. L. Logunov, M. A. ElSayed, in Nanostructured Materials, vol. 679, Amer. Chemical Soc., Washington, 1997, pp 125.
D. F. Ollis, Enviromental Science and Technology 1985, 19, 480.
J. C. Sánchez-López, A. Fernández, Surf. Interface Anal. 1998, 26, 1016.
I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2000, 16, 2731.
K. L. Parry, A. G. Shard, R. G. Short, R. G. White, J. D. Whittle, A. Wright, Surf. Interface Anal. 2006, 38, 1497.
I. Tunc, H. O. Gunenc, H. Sezen, S. Suzer, M. A. Correa-Duatre, L. M. Liz-Marzan, J. Nanosci. Technol. 2008, 8, 1.
D. I. Garcia-Gutierrez, C. E. Gutierrez-Wing, L. Giovanetti, J. M. Ramallo-Lopez, F. G. Requejo, M. Jose-Yacaman, J. Phys. Chem. B. 2005, 109, 3813.
J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129.
C. Anderson, A. J. Bard, J. Phys. Chem. B 1997, 101, 2611.
V. Trouillet, H. Tröße, M. Bruns, E. Nold, R. G. White, J. Vac. Sci. Technol. 2007, 25, 927.
E. M. Fernandez, J. M. Soler, I. L. Garzon, L. C. Balbas, Phys. Rev. B 2004, 70, 165403.
T. Kallioa, S. Alajokia, V. Poreb, M. Ritalab, J. Lainea, M. Leskeläb, P. Stenius, Colloids Surf., A Physicochemical and Engineering Aspects 2006, 291, 162.
V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943.
T. Hirakawa, P. V. Kamat, Langmuir 2004, 20, 5645.
M. Fujihira, Y. Satoh, T. Osa, Nature 1981, 293, 206.
B. Kraeutler, A. J. Bard, J. Am. Chem. Soc. 1977, 99, 7729.
L. Óvári, J. Kiss, Appl. Surf. Sci. 2006, 252, 8624.
P. Mulvaney, Langmuir 1996, 12, 788.
D. Reyes-Coronado, G. Rodrŕguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 2008, 19, 145605.
M. Jakob, H. Levanon, P. V. Kamat, Nano Lett. 2003, 3, 353.
P. V. Kamat, J. Phys. Chem. B 2002, 106, 7729.
T. Hirakawa, P. V. Kamat, J. Am. Chem. Soc. 2005, 127, 3928.
K. Hashimoto, T. Kawai, T. Sakata, J. Phys. Chem. 1984, 88, 4083.
H.-Y. Chuang, D.-H. Chen, Nanotechnology 2009, 20, 105704.
A. Dawson, P. V. Kamat, J. Phys. Chem. B 2001, 105, 960.
B. O. Aronsson, A. Krozer, J. Lausmaa, B. Kasemo, Surf. Sci. Spectra 1997, 4, 42.
1998; 26
2004; 20
2004; 126
2009; 20
2006; 38
1984; 88
2008; 19
2002; 33
1997
2006; 110
2008; 8
2006; 252
2006; 291
2004; 108
1976; 8
1997; 4
1996; 12
2001; 105
1985; 19
1981; 293
2000; 16
2004; 70
1995; 28
1993; 93
2005; 127
1997; 101
2002; 106
2003; 3
2005; 109
1977; 99
1996; 415
2007; 25
References_xml – reference: D. I. Garcia-Gutierrez, C. E. Gutierrez-Wing, L. Giovanetti, J. M. Ramallo-Lopez, F. G. Requejo, M. Jose-Yacaman, J. Phys. Chem. B. 2005, 109, 3813.
– reference: V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943.
– reference: M. P. Seah, S. J. Spencer, Surf. Interface Anal. 2002, 33, 640.
– reference: I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzan, Langmuir 2000, 16, 2731.
– reference: T. Hirakawa, P. V. Kamat, Langmuir 2004, 20, 5645.
– reference: H.-Y. Chuang, D.-H. Chen, Nanotechnology 2009, 20, 105704.
– reference: B. O. Aronsson, A. Krozer, J. Lausmaa, B. Kasemo, Surf. Sci. Spectra 1997, 4, 42.
– reference: V. Trouillet, H. Tröße, M. Bruns, E. Nold, R. G. White, J. Vac. Sci. Technol. 2007, 25, 927.
– reference: P. Mulvaney, Langmuir 1996, 12, 788.
– reference: C. Anderson, A. J. Bard, J. Phys. Chem. B 1997, 101, 2611.
– reference: M. Jakob, H. Levanon, P. V. Kamat, Nano Lett. 2003, 3, 353.
– reference: T. Kallioa, S. Alajokia, V. Poreb, M. Ritalab, J. Lainea, M. Leskeläb, P. Stenius, Colloids Surf., A Physicochemical and Engineering Aspects 2006, 291, 162.
– reference: M. Fujihira, Y. Satoh, T. Osa, Nature 1981, 293, 206.
– reference: K. Hashimoto, T. Kawai, T. Sakata, J. Phys. Chem. 1984, 88, 4083.
– reference: P. V. Kamat, J. Phys. Chem. B 2002, 106, 7729.
– reference: D. Reyes-Coronado, G. Rodrŕguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 2008, 19, 145605.
– reference: L. Óvári, J. Kiss, Appl. Surf. Sci. 2006, 252, 8624.
– reference: E. M. Fernandez, J. M. Soler, I. L. Garzon, L. C. Balbas, Phys. Rev. B 2004, 70, 165403.
– reference: A. Heller, Acc. Chem. Res. 1995, 28, 503.
– reference: I. Tunc, H. O. Gunenc, H. Sezen, S. Suzer, M. A. Correa-Duatre, L. M. Liz-Marzan, J. Nanosci. Technol. 2008, 8, 1.
– reference: B. Kraeutler, A. J. Bard, J. Am. Chem. Soc. 1977, 99, 7729.
– reference: T. S. Ahmadi, S. L. Logunov, M. A. ElSayed, in Nanostructured Materials, vol. 679, Amer. Chemical Soc., Washington, 1997, pp 125.
– reference: J. C. Sánchez-López, A. Fernández, Surf. Interface Anal. 1998, 26, 1016.
– reference: X. Zhang, A. Fujishima, M. J. Alexei, V. Emeline, T. Murakami, J. Phys. Chem. B 2006, 110, 25142.
– reference: K. L. Parry, A. G. Shard, R. G. Short, R. G. White, J. D. Whittle, A. Wright, Surf. Interface Anal. 2006, 38, 1497.
– reference: G. G. Fuentes, E. Elizalde, F. Yubero, J. M. Sanz, Surf. Interface Anal. 2002, 33, 230.
– reference: D. F. Ollis, Enviromental Science and Technology 1985, 19, 480.
– reference: J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129.
– reference: P. V. Kamat, Chem. Rev. 1993, 93, 267.
– reference: T. Hirakawa, P. V. Kamat, J. Am. Chem. Soc. 2005, 127, 3928.
– reference: A. Dawson, P. V. Kamat, J. Phys. Chem. B 2001, 105, 960.
– reference: Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945.
– reference: I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, J. Electroanal. Chem. 1996, 415, 183.
– volume: 126
  start-page: 4943
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 480
  year: 1985
  publication-title: Enviromental Science and Technology
– volume: 109
  start-page: 3813
  year: 2005
  publication-title: J. Phys. Chem. B.
– volume: 99
  start-page: 7729
  year: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 293
  start-page: 206
  year: 1981
  publication-title: Nature
– volume: 33
  start-page: 640
  year: 2002
  publication-title: Surf. Interface Anal.
– volume: 12
  start-page: 788
  year: 1996
  publication-title: Langmuir
– volume: 101
  start-page: 2611
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 145605
  year: 2008
  publication-title: Nanotechnology
– volume: 20
  start-page: 5645
  year: 2004
  publication-title: Langmuir
– volume: 127
  start-page: 3928
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 960
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 1
  year: 2008
  publication-title: J. Nanosci. Technol.
– volume: 25
  start-page: 927
  year: 2007
  publication-title: J. Vac. Sci. Technol.
– volume: 28
  start-page: 503
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 70
  start-page: 165403
  year: 2004
  publication-title: Phys. Rev. B
– volume: 110
  start-page: 25142
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 415
  start-page: 183
  year: 1996
  publication-title: J. Electroanal. Chem.
– volume: 88
  start-page: 4083
  year: 1984
  publication-title: J. Phys. Chem.
– volume: 108
  start-page: 945
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 93
  start-page: 267
  year: 1993
  publication-title: Chem. Rev.
– volume: 291
  start-page: 162
  year: 2006
  publication-title: Colloids Surf., A Physicochemical and Engineering Aspects
– volume: 3
  start-page: 353
  year: 2003
  publication-title: Nano Lett.
– volume: 8
  start-page: 129
  year: 1976
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 252
  start-page: 8624
  year: 2006
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 42
  year: 1997
  publication-title: Surf. Sci. Spectra
– volume: 106
  start-page: 7729
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 1497
  year: 2006
  publication-title: Surf. Interface Anal.
– volume: 26
  start-page: 1016
  year: 1998
  publication-title: Surf. Interface Anal.
– volume: 16
  start-page: 2731
  year: 2000
  publication-title: Langmuir
– volume: 33
  start-page: 230
  year: 2002
  publication-title: Surf. Interface Anal.
– volume: 20
  start-page: 105704
  year: 2009
  publication-title: Nanotechnology
– start-page: 125
  year: 1997
SSID ssj0008386
Score 2.2342496
Snippet The photocatalytic activity of TiO2 under sunlight irradiation depends on the bandgap energy. Due to the relatively low solar intensity in the UV region (<10%)...
SourceID wiley
istex
SourceType Publisher
StartPage 835
SubjectTerms bandgap
charge separation
core-shell nanoparticles
photocatalytic activity
TiO2
Title Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films
URI https://api.istex.fr/ark:/67375/WNG-FCRHQFMH-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsia.3558
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4iiL54mYp38iC-dZckvezNOaxV2MS54cCHkqTpKNM61g3EX29Osm7ok_hUCCk9nEt6TvLlOwhdEqodo9ngjiAqcJgK6g6kEQ5VTdlgRHEvgIvCna4XDdjD0B0uUJVwF8byQyw33CAyzHoNAc5FUVuRhhYZrwI3uF5-AaoF-VBvxRwVUNPkURcAxJx6lryzdVIrX9TpKGjy82daav4r4Q56LSWycJJxdT4TVfn1i6zxfyLvou1Fuolb1j_20JrKK2izXXZ5q6ANAwGVxT7q3_A8GfEJTkqEDNgM60Fs6JQULpQlCtejWY5bo-t-9kgw8GDiAvCkOOe5rsHtt3Cavb0XB2gQ3vbbkbPoueBk2kQ6aFSDpqQZKCYUS70kdf1E17AgtSsFTV2pPOkm0JdcW5gTootxRoQiUlIeSEIP0Xr-kasjhBVhnicYIdyVLPEDzv0g9RqJoIIxJcQxujL6jyeWVyPm0zHAzHw3funexWG7Fz2FnSju6IlGq8uJlmqZxFqfMUgWP9-34Hny14mnaMuiAGA35Qytz6Zzda6Ti5m4MG70DYXAyz8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Ivrit_htHsS3TpemXYcvzumsuk3UiXsQQpKmo0zrsBPEv95caif6JD4VwpUeubv27vrL7wD2qGsco1YRjqQ6cJgODh1MIxxX11SFUS38AA8Ktzt-eM8ue15vAo6KszA5P8S44YaRYd_XGODYkD74Zg3NElFGcvBJmMKB3kicf3r7zR0VuHbMoykBqP3vWTDPHtKD4k6TkOJevv9MTO2XpTkPj4VOOaBkUH4bybL6-EXX-E-lF2DuK-Mk9dxFFmFCp0sw0ygGvS3BtEWBqmwZuicijfpiSKICJINmI2aRWEYlTTKdc4Wb1SQl9f5xN7mmBKkwSYaQUpKK1JTh-bNInDw9Zytw3zzrNkLna-yCkxgrmbjRFTemtUAzqVnsR7FXjUwZi1p7Srqxp7SvvAhHkxsjC0pNPc6o1FQpVwSKuqtQSl9SvQZEU-b7klEqPMWiaiBENYj9SiRdyZiWch32rQH4MKfW4OJ1gEizqscfOue82bgNb5rtkLeNoN3WsWDOtky52U-OmvG7izpeN_4quAszYbfd4q2LztUmzOagAGyubEFp9Pqmt02uMZI71qc-AUf2z1s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgiOXCjtjxAXFLaRwnTW6UQghLC5RWVOJg2Y6DIiBUTZEQX4_HaUBwQpwiWRNlNEsy4zy_QWifODowAptbgijfosqvWVBGWI4KpE2J4p4PB4VbbS_q0Yu-2x-jKuEsTMEP8bXhBplh3teQ4IM4OfwmDc1TXgVu8Ek0Rb1aAGMbTjrf1FG-Y6Y86g6AmN-eJfFsjRyWd-p6FEz5_rMuNR-WcAE9lCoVeJKn6ttIVOXHL7bG_-m8iObH9SZuFAGyhCZUtoxmm-WYt2U0bTCgMl9B3WOexY98gOMSIgNOw3oRGz4lhXNVMIXr1TTDjcejbnpNMBBh4hwApTjjmW7Ci2fhJH1-yVdRLzztNiNrPHTBSrWPdNYo20lI4CsqFE28OHHrsW5iQWtXCidxpfKkG8Ngcu1iTojuxikRikjpcF8SZw1VstdMrSOsCPU8QQnhrqRx3ee87ieeHQtHUKqE2EAHxv5sUBBrMD58ApxZ3WX37TMWNjvRbdiKWEsLGqt-CRZcy4RpezLQjN2dN-C6-VfBPTRzcxKyq_P25RaaKxABsLOyjSqj4Zva0YXGSOyaiPoECU3OCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+determination+and+charge+separation+in+Ag%40TiO2+core+shell+nanoparticle+films&rft.jtitle=Surface+and+interface+analysis&rft.au=Tunc%2C+Ilknur&rft.au=Bruns%2C+Michael&rft.au=Gliemann%2C+Hartmut&rft.au=Grunze%2C+Michael&rft.date=2010-06-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0142-2421&rft.eissn=1096-9918&rft.volume=42&rft.issue=6%E2%80%907&rft.spage=835&rft.epage=841&rft_id=info:doi/10.1002%2Fsia.3558&rft.externalDBID=10.1002%252Fsia.3558&rft.externalDocID=SIA3558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-2421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-2421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-2421&client=summon