Modeling interactions between voltage-gated Ca2+ channels and KCa1.1 channels

High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies ag...

Full description

Saved in:
Bibliographic Details
Published inChannels (Austin, Tex.) Vol. 7; no. 6; pp. 524 - 529
Main Authors Engbers, Jordan DT, Zamponi, Gerald W, Turner, Ray W
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2013
Landes Bioscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca 2+ domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca 2+ ] i , despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions.
AbstractList High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca 2+ domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca 2+ ] i , despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions.
Author Engbers, Jordan DT
Turner, Ray W
Zamponi, Gerald W
Author_xml – sequence: 1
  givenname: Jordan DT
  surname: Engbers
  fullname: Engbers, Jordan DT
– sequence: 2
  givenname: Gerald W
  surname: Zamponi
  fullname: Zamponi, Gerald W
– sequence: 3
  givenname: Ray W
  surname: Turner
  fullname: Turner, Ray W
  email: rwturner@ucalgary.ca
BookMark eNpVkEtLAzEUhYNU7EM3_oLZy9Q8ZpKZjSCDL2xxo-tw85hpZJqUTGzpv7e1Irg6l3Pgu5wzRSMfvEXomuB5QTi51Svwc1pWXJyhCakZy3nN69HfXeIxmg7DJ8acUUIu0JiymlY14RO0XAZje-e7zPlkI-jkgh8yZdPOWp9tQ5-gs3kHyZqsAXqTHb952w8ZeJO9NkDm5M-7ROct9IO9-tUZ-nh8eG-e88Xb00tzv8gdpTTlwFgtdKuUElAazozgotC6bJVtWWkUrRjjQguscEmI4oYToQ-dOGZMtBVhM3R34m6-1NoabX2K0MtNdGuIexnAyf-JdyvZha0scEGLShwA5QngfBviGnYh9kYm2PchthG8doNkBMvjvvLYTv7sy74BSWNvrw
ContentType Journal Article
Copyright Copyright © 2013 Landes Bioscience 2013
Copyright_xml – notice: Copyright © 2013 Landes Bioscience 2013
DBID 0YH
5PM
DOI 10.4161/chan.25867
DatabaseName Taylor & Francis Open Access
PubMed Central (Full Participant titles)
DatabaseTitleList

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1933-6969
EndPage 529
ExternalDocumentID 10925867
Genre Article Addendum
GroupedDBID ---
0R~
0YH
29B
53G
5GY
AAAVI
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ADBBV
ADCVX
AENEX
AHDLD
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVBZW
BAWUL
DGEBU
DIK
EBS
EMOBN
F5P
FUNRP
FVPDL
GROUPED_DOAJ
GTTXZ
H13
HYE
M4Z
O9-
OK1
OVD
P2P
RPM
SV3
TEI
TEORI
TFL
TFT
TFW
TR2
TTHFI
TUS
V1K
5PM
TDBHL
ID FETCH-LOGICAL-i222t-a3397cfbbb7a5d63d7674cc5fbef35db283367c70b0511b6d617c69660337f813
IEDL.DBID RPM
ISSN 1933-6950
IngestDate Tue Sep 17 21:26:45 EDT 2024
Tue Jul 04 18:16:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i222t-a3397cfbbb7a5d63d7674cc5fbef35db283367c70b0511b6d617c69660337f813
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042487/
PMID 23928916
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4042487
informaworld_taylorfrancis_310_4161_chan_25867
PublicationCentury 2000
PublicationDate 11/2/2013
PublicationDateYYYYMMDD 2013-11-02
PublicationDate_xml – month: 11
  year: 2013
  text: 11/2/2013
  day: 02
PublicationDecade 2010
PublicationTitle Channels (Austin, Tex.)
PublicationYear 2013
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
SSID ssj0063211
Score 2.07975
Snippet High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction....
SourceID pubmedcentral
informaworld
SourceType Open Access Repository
Publisher
StartPage 524
SubjectTerms Addendum
Cav2.2
Cav3
ion channel complex
KCa1.1
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKERIL4inKSx7YkEtix3YyooqqAsFEpTJFfoouAZUw8O-5c1pUurEmiuKc7bsv57vvI-RaqAhBysEMeJ-xwpqCGV1pForMVy53MYRUIPusJtPiYSZnPaJWvTBYVon_0LEjiki-Gje3sUmBBOH4LbbEDrksld4i21xDyId1nL1OVh5YCZ50dwGbCKYqmXW0pBvPbnCTbhZFrkWZ8T7ZW8JDetfN5wHpheaQ7HSCkd9H5Amly7CBnCLNw6JrSviky2IrCq6mBf-Qcmaejgy_oTiSBuIfha-ljyOTD_Pfa8dkOr5_GU3YUhCBzSGMt8wIQA8uWmu1kV4Jj0w8zsloQxTSW4AKQmmnMwtbLbfKAzxxCvk3hdCxzMUJ6TfvTTgl1ErpvYqWG2mKUDrrYpUFlysjtODGDshw3Tp1m_IHsRP7qAET1mjOGgdcJ3MOiP5jv_qjY8uokb_6751m_pZ4rAs8di312X9fdU52OYpSYHKXX5B-u_gKlwANWnuV1sEPXk27QQ
  priority: 102
  providerName: Taylor & Francis
Title Modeling interactions between voltage-gated Ca2+ channels and KCa1.1 channels
URI https://www.tandfonline.com/doi/abs/10.4161/chan.25867
https://pubmed.ncbi.nlm.nih.gov/PMC4042487
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aguBFfGJ9lD14kzw3u5scJViKUvFgoZ7CPrFgY6nx4L93dpNK69FrQmCY2cx8mcx8H0I3hFkoUgoioHUcZFJkgeAFD0wW60IlyhrjB2Sf2GSWPczpvIfoZhfGD-0ruQjr92VYL978bOVqqaLNnFj0PC0z978u51Ef9eGAbj7R2_TLSOpFdwGYkIAVNG45SR2Oj9wubZjSnDnpvRSQQV44nfMdjtK_w5Fb1WZ8iA46mIjvWnOOUM_Ux2ivFY78PkFTJ2HmFsmxo3tYt8sJn7gbusKQchrIE753pnEp0lvsjKqhDmJRa_xYiiRMfq-dotn4_qWcBJ0wQrCAct4EggCKUFZKyQXVjGjHyKMUtdJYQrUEyEAYVzyW8MolkmmAKYo5Hk5CuM0TcoYG9UdtzhGWlGrNrEwFFZnJlVS2iI1KmCCcpEIOUbjtnarxfQTbin5UgA0r59nKGVx5zw4R3_FftWpZMyrHY717B8Lr-ay7cF78-8lLtJ86lQrX7U2v0KBZf5lrwAqNHKF-_DoZ-RPyA7Svwsc
link.rule.ids 230,315,730,783,787,888,27514,27936,27937,53804,53806,59471,59472
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CMGCeIry9MCGUpI4tpMRVVSBPqZWKpPlp-gSUBsG_j0-J6C2G2uiKM45d_flcvd9CN0T5nyS0n4HjImjTMkskrzgkc1iU-hEO2tDg-yYldPsdUZnbeli2bZVwje0a4giQqwG54ZiNHg44PFHmIntpjRnfBvt0iLjIF0Qv5W_IZiRNAjvenBCIlbQuOEl3bh2g5x0sytyJc30j9Bhiw_xU7Ohx2jLVidor1GM_D5FI9AugwlyDDwPi2YqYYnbbivsY03tA0Qomhnck-kDhpVUPgFi_7h40JNJN_k7doam_edJr4xaRYRo7vN4HUni4YN2SikuqWHEABWP1tQp6wg1ymMFwrjmsfK-lihmPD7RDAg4CeEuT8g52qk-KnuBsKLUGOZUKqnMbK6VdkVsdcIk4SSVqoO6q9YRdSgguEbtQ3hQKMCcAhYsgjk7iK_ZT3w2dBkCCKzXz1Tz90BkncF_15xf_vdWd2i_nIyGYvgyHlyhgxQUKqDSm16jnXrxZW88TqjVbXgnfgCJpr6x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VIhAL4inK0wMbSkni2G5GVKgKhYqBSmWy_BRdQlXCwL_Hl7So7caaKIpz9t19se--D-Cach-SlAkzYG0cZVplkRK5iFwW29wkxjtXFcgOeX-UPY3ZuAF80QuDZZX4D-1roogqVqNzT61HB0c4fostse2UdbjYgE2Wh_Aa1nH83l9EYE7TSnc3YBMa8ZzFNS3p2rNr3KTrRZFLWaa3B7tzeEju6vnch4YrDmCrFoz8OYQXlC7DBnKCNA-zuinhi8yLrUgINWWID9WemSVdld4QHEkR8h8JX0sGXZW0k79rRzDqPbx1-9FcECGahDReRooG9GC81looZjm1yMRjDPPaecqsDlCBcmFErIOrJZrbAE8MR_5NSoXvJPQYmsVn4U6AaMas5V6niqnMdYw2Po-dSbiigqZKt6C9bB1ZVvsHvhb7kAETSjSnxAHLypwtECv2k9OaLUMif_XqnWLyUfFYZ3js2hGn_33VFWy_3vfk8-NwcAY7KepT4D5veg7NcvbtLgJKKPVltSR-AZt4vdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+interactions+between+voltage-gated+Ca2%2B+channels+and+KCa1.1+channels&rft.jtitle=Channels+%28Austin%2C+Tex.%29&rft.au=Engbers%2C+Jordan+DT&rft.au=Zamponi%2C+Gerald+W&rft.au=Turner%2C+Ray+W&rft.date=2013-11-02&rft.pub=Taylor+%26+Francis&rft.issn=1933-6950&rft.eissn=1933-6969&rft.volume=7&rft.issue=6&rft.spage=524&rft.epage=529&rft_id=info:doi/10.4161%2Fchan.25867&rft.externalDBID=0YH&rft.externalDocID=10925867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1933-6950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1933-6950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1933-6950&client=summon