Modeling interactions between voltage-gated Ca2+ channels and KCa1.1 channels
High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies ag...
Saved in:
Published in | Channels (Austin, Tex.) Vol. 7; no. 6; pp. 524 - 529 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.11.2013
Landes Bioscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca
2+
domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca
2+
]
i
, despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions. |
---|---|
AbstractList | High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca
2+
domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca
2+
]
i
, despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions. |
Author | Engbers, Jordan DT Turner, Ray W Zamponi, Gerald W |
Author_xml | – sequence: 1 givenname: Jordan DT surname: Engbers fullname: Engbers, Jordan DT – sequence: 2 givenname: Gerald W surname: Zamponi fullname: Zamponi, Gerald W – sequence: 3 givenname: Ray W surname: Turner fullname: Turner, Ray W email: rwturner@ucalgary.ca |
BookMark | eNpVkEtLAzEUhYNU7EM3_oLZy9Q8ZpKZjSCDL2xxo-tw85hpZJqUTGzpv7e1Irg6l3Pgu5wzRSMfvEXomuB5QTi51Svwc1pWXJyhCakZy3nN69HfXeIxmg7DJ8acUUIu0JiymlY14RO0XAZje-e7zPlkI-jkgh8yZdPOWp9tQ5-gs3kHyZqsAXqTHb952w8ZeJO9NkDm5M-7ROct9IO9-tUZ-nh8eG-e88Xb00tzv8gdpTTlwFgtdKuUElAazozgotC6bJVtWWkUrRjjQguscEmI4oYToQ-dOGZMtBVhM3R34m6-1NoabX2K0MtNdGuIexnAyf-JdyvZha0scEGLShwA5QngfBviGnYh9kYm2PchthG8doNkBMvjvvLYTv7sy74BSWNvrw |
ContentType | Journal Article |
Copyright | Copyright © 2013 Landes Bioscience 2013 |
Copyright_xml | – notice: Copyright © 2013 Landes Bioscience 2013 |
DBID | 0YH 5PM |
DOI | 10.4161/chan.25867 |
DatabaseName | Taylor & Francis Open Access PubMed Central (Full Participant titles) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1933-6969 |
EndPage | 529 |
ExternalDocumentID | 10925867 |
Genre | Article Addendum |
GroupedDBID | --- 0R~ 0YH 29B 53G 5GY AAAVI ABCCY ABFIM ABPEM ABTAI ACGFS ADBBV ADCVX AENEX AHDLD AIJEM ALMA_UNASSIGNED_HOLDINGS AOIJS AVBZW BAWUL DGEBU DIK EBS EMOBN F5P FUNRP FVPDL GROUPED_DOAJ GTTXZ H13 HYE M4Z O9- OK1 OVD P2P RPM SV3 TEI TEORI TFL TFT TFW TR2 TTHFI TUS V1K 5PM TDBHL |
ID | FETCH-LOGICAL-i222t-a3397cfbbb7a5d63d7674cc5fbef35db283367c70b0511b6d617c69660337f813 |
IEDL.DBID | RPM |
ISSN | 1933-6950 |
IngestDate | Tue Sep 17 21:26:45 EDT 2024 Tue Jul 04 18:16:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i222t-a3397cfbbb7a5d63d7674cc5fbef35db283367c70b0511b6d617c69660337f813 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042487/ |
PMID | 23928916 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4042487 informaworld_taylorfrancis_310_4161_chan_25867 |
PublicationCentury | 2000 |
PublicationDate | 11/2/2013 |
PublicationDateYYYYMMDD | 2013-11-02 |
PublicationDate_xml | – month: 11 year: 2013 text: 11/2/2013 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | Channels (Austin, Tex.) |
PublicationYear | 2013 |
Publisher | Taylor & Francis Landes Bioscience |
Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
SSID | ssj0063211 |
Score | 2.07975 |
Snippet | High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction.... |
SourceID | pubmedcentral informaworld |
SourceType | Open Access Repository Publisher |
StartPage | 524 |
SubjectTerms | Addendum Cav2.2 Cav3 ion channel complex KCa1.1 |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKERIL4inKSx7YkEtix3YyooqqAsFEpTJFfoouAZUw8O-5c1pUurEmiuKc7bsv57vvI-RaqAhBysEMeJ-xwpqCGV1pForMVy53MYRUIPusJtPiYSZnPaJWvTBYVon_0LEjiki-Gje3sUmBBOH4LbbEDrksld4i21xDyId1nL1OVh5YCZ50dwGbCKYqmXW0pBvPbnCTbhZFrkWZ8T7ZW8JDetfN5wHpheaQ7HSCkd9H5Amly7CBnCLNw6JrSviky2IrCq6mBf-Qcmaejgy_oTiSBuIfha-ljyOTD_Pfa8dkOr5_GU3YUhCBzSGMt8wIQA8uWmu1kV4Jj0w8zsloQxTSW4AKQmmnMwtbLbfKAzxxCvk3hdCxzMUJ6TfvTTgl1ErpvYqWG2mKUDrrYpUFlysjtODGDshw3Tp1m_IHsRP7qAET1mjOGgdcJ3MOiP5jv_qjY8uokb_6751m_pZ4rAs8di312X9fdU52OYpSYHKXX5B-u_gKlwANWnuV1sEPXk27QQ priority: 102 providerName: Taylor & Francis |
Title | Modeling interactions between voltage-gated Ca2+ channels and KCa1.1 channels |
URI | https://www.tandfonline.com/doi/abs/10.4161/chan.25867 https://pubmed.ncbi.nlm.nih.gov/PMC4042487 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aguBFfGJ9lD14kzw3u5scJViKUvFgoZ7CPrFgY6nx4L93dpNK69FrQmCY2cx8mcx8H0I3hFkoUgoioHUcZFJkgeAFD0wW60IlyhrjB2Sf2GSWPczpvIfoZhfGD-0ruQjr92VYL978bOVqqaLNnFj0PC0z978u51Ef9eGAbj7R2_TLSOpFdwGYkIAVNG45SR2Oj9wubZjSnDnpvRSQQV44nfMdjtK_w5Fb1WZ8iA46mIjvWnOOUM_Ux2ivFY78PkFTJ2HmFsmxo3tYt8sJn7gbusKQchrIE753pnEp0lvsjKqhDmJRa_xYiiRMfq-dotn4_qWcBJ0wQrCAct4EggCKUFZKyQXVjGjHyKMUtdJYQrUEyEAYVzyW8MolkmmAKYo5Hk5CuM0TcoYG9UdtzhGWlGrNrEwFFZnJlVS2iI1KmCCcpEIOUbjtnarxfQTbin5UgA0r59nKGVx5zw4R3_FftWpZMyrHY717B8Lr-ay7cF78-8lLtJ86lQrX7U2v0KBZf5lrwAqNHKF-_DoZ-RPyA7Svwsc |
link.rule.ids | 230,315,730,783,787,888,27514,27936,27937,53804,53806,59471,59472 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CMGCeIry9MCGUpI4tpMRVVSBPqZWKpPlp-gSUBsG_j0-J6C2G2uiKM45d_flcvd9CN0T5nyS0n4HjImjTMkskrzgkc1iU-hEO2tDg-yYldPsdUZnbeli2bZVwje0a4giQqwG54ZiNHg44PFHmIntpjRnfBvt0iLjIF0Qv5W_IZiRNAjvenBCIlbQuOEl3bh2g5x0sytyJc30j9Bhiw_xU7Ohx2jLVidor1GM_D5FI9AugwlyDDwPi2YqYYnbbivsY03tA0Qomhnck-kDhpVUPgFi_7h40JNJN_k7doam_edJr4xaRYRo7vN4HUni4YN2SikuqWHEABWP1tQp6wg1ymMFwrjmsfK-lihmPD7RDAg4CeEuT8g52qk-KnuBsKLUGOZUKqnMbK6VdkVsdcIk4SSVqoO6q9YRdSgguEbtQ3hQKMCcAhYsgjk7iK_ZT3w2dBkCCKzXz1Tz90BkncF_15xf_vdWd2i_nIyGYvgyHlyhgxQUKqDSm16jnXrxZW88TqjVbXgnfgCJpr6x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VIhAL4inK0wMbSkni2G5GVKgKhYqBSmWy_BRdQlXCwL_Hl7So7caaKIpz9t19se--D-Cach-SlAkzYG0cZVplkRK5iFwW29wkxjtXFcgOeX-UPY3ZuAF80QuDZZX4D-1roogqVqNzT61HB0c4fostse2UdbjYgE2Wh_Aa1nH83l9EYE7TSnc3YBMa8ZzFNS3p2rNr3KTrRZFLWaa3B7tzeEju6vnch4YrDmCrFoz8OYQXlC7DBnKCNA-zuinhi8yLrUgINWWID9WemSVdld4QHEkR8h8JX0sGXZW0k79rRzDqPbx1-9FcECGahDReRooG9GC81looZjm1yMRjDPPaecqsDlCBcmFErIOrJZrbAE8MR_5NSoXvJPQYmsVn4U6AaMas5V6niqnMdYw2Po-dSbiigqZKt6C9bB1ZVvsHvhb7kAETSjSnxAHLypwtECv2k9OaLUMif_XqnWLyUfFYZ3js2hGn_33VFWy_3vfk8-NwcAY7KepT4D5veg7NcvbtLgJKKPVltSR-AZt4vdo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+interactions+between+voltage-gated+Ca2%2B+channels+and+KCa1.1+channels&rft.jtitle=Channels+%28Austin%2C+Tex.%29&rft.au=Engbers%2C+Jordan+DT&rft.au=Zamponi%2C+Gerald+W&rft.au=Turner%2C+Ray+W&rft.date=2013-11-02&rft.pub=Taylor+%26+Francis&rft.issn=1933-6950&rft.eissn=1933-6969&rft.volume=7&rft.issue=6&rft.spage=524&rft.epage=529&rft_id=info:doi/10.4161%2Fchan.25867&rft.externalDBID=0YH&rft.externalDocID=10925867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1933-6950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1933-6950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1933-6950&client=summon |