Modeling and Simulation of Ge/Si-Nanodisk Array for QD-based IB Solar Cells

Acomputationally efficient finite element simulation is performed to calculate the miniband structure and DoSs for the well-ordered Ge/Si-nanodisk array. The semiconductor nanostructures are fabricated by using self-assemble bio-template and damage-free NBE technique. Within the envelop-function fra...

Full description

Saved in:
Bibliographic Details
Published inGreen Photonics and Smart Photonics pp. 25 - 45
Main Authors Lee, Ming-Yi, Tsai, Yi-Chia, Li, Yiming, Samukawa, Seiji
Format Book Chapter
LanguageEnglish
Published Denmark Routledge 2016
River Publishers
Edition1
Subjects
Online AccessGet full text
ISBN8793379277
9788793379275
DOI10.1201/9781003338338-3

Cover

More Information
Summary:Acomputationally efficient finite element simulation is performed to calculate the miniband structure and DoSs for the well-ordered Ge/Si-nanodisk array. The semiconductor nanostructures are fabricated by using self-assemble bio-template and damage-free NBE technique. Within the envelop-function framework, our model surmounts theoretical approximations of the multidimensional Kronig-Penney method and accurately calculates the energy dispersion relationship. The miniband formation works as the intermediate band within the bandgap of bulk silicon band. Effects of the interdot space, the radius and thickness of the Ge/Si-nanodisk on the miniband structure, and conversion efficiency of the solar cell (SC) are discussed. The findings of this study provide a guideline for 3D QDs IBSC design.
ISBN:8793379277
9788793379275
DOI:10.1201/9781003338338-3