Predictive motion planning for AUVs subject to strong time-varying currents and forecasting uncertainties

This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Contr...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE International Conference on Robotics and Automation pp. 1144 - 1151
Main Authors Huynh, Van T., Dunbabin, Matthew, Smith, Ryan N.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text
ISSN1050-4729
DOI10.1109/ICRA.2015.7139335

Cover

Abstract This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
AbstractList This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Author Smith, Ryan N.
Dunbabin, Matthew
Huynh, Van T.
Author_xml – sequence: 1
  givenname: Van T.
  surname: Huynh
  fullname: Huynh, Van T.
  email: tv.huynh@qut.edu.au
  organization: Sch. of Electr. Eng. & Comput. Sci., Queensland Univ. of Technol., Brisbane, QLD, Australia
– sequence: 2
  givenname: Matthew
  surname: Dunbabin
  fullname: Dunbabin, Matthew
  email: m.dunbabin@qut.edu.au
  organization: Inst. for Future Environments, Queensland Univ. of Technol., Brisbane, QLD, Australia
– sequence: 3
  givenname: Ryan N.
  surname: Smith
  fullname: Smith, Ryan N.
  email: rnsmith@fortlewis.edu
  organization: Dept. of Phys. & Eng., Fort Lewis Coll., Durango, CO, USA
BookMark eNotUMtqAjEUTcFC1foBpZv8wEzzmEeyHKQPQWgptlu5Jjcl4mQkiUL_viN1dRbnwTlnRiZhCEjIA2cl50w_rZafXSkYr8uWSy1lfUMWulW8arVutJDVhEw5q1lRtULfkVlKe8aYlE0zJf4jovUm-zPSfsh-CPR4gBB8-KFuiLT7-k40nXZ7NJnmgaYch5HKvsfiDPH3ojOnGDHkRCHYiwkNpHwhTsFgzOBD9pjuya2DQ8LFFedk8_K8Wb4V6_fX1bJbF15wlQuLbcsECmcNQINGOQCjrBG6AsaQKzkONE6rWihjteHAdzsHrJGjwzVyTh7_Yz0ibo_R92PL7fUY-QfkglzE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA.2015.7139335
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479969234
1479969230
EndPage 1151
ExternalDocumentID 7139335
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i218t-de7702e2fdcaa6ec8faac8dc294a00e183335cf98528cd9c1a1bbfa063fdcf63
IEDL.DBID RIE
ISSN 1050-4729
IngestDate Wed Aug 27 02:16:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-de7702e2fdcaa6ec8faac8dc294a00e183335cf98528cd9c1a1bbfa063fdcf63
OpenAccessLink http://robotics.usc.edu/~ryan/Publications_files/ICRA_2015_Van.pdf
PageCount 8
ParticipantIDs ieee_primary_7139335
PublicationCentury 2000
PublicationDate 2015-May
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-May
PublicationDecade 2010
PublicationTitle Proceedings - IEEE International Conference on Robotics and Automation
PublicationTitleAbbrev ICRA
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003366
Score 1.8094115
Snippet This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean...
SourceID ieee
SourceType Publisher
StartPage 1144
SubjectTerms Mathematical model
Oceans
Path planning
Prediction algorithms
Predictive models
Uncertainty
Vehicles
Title Predictive motion planning for AUVs subject to strong time-varying currents and forecasting uncertainties
URI https://ieeexplore.ieee.org/document/7139335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELaAqV36gKpveehYhzwckowIFdFKVKiCig3Zl3OFKgVEQof--p6TlD7UoVsUxZHjc3yv7-5j7MYDmWAEKABBChmiFrHnBUJJkjHEOpChrXceP_ZGM_kwD-cNdrurhUHEEnyGjr0sc_npCrY2VNYlh4r877DJmrTNqlqt3akbBGVekswFV0iyGOsMpucm3fvBU9-CuEKnfsEPJpVSkQwP2PhzChV-5NXZFtqB91_dGf87x0PW-SrZ45OdMjpiDcyO2f63boNttpxsbFbGnm-8Iu_h65qyiJPpyvuz55znW20jM7xY8dxGyV-4ZZ8Xb2pj66E4VO2ccq6y1A5CULkFTnNSjxW4wDZo7bDp8G46GImaaUEsScUXIsUocn30TQpK9RBioxTEKfiJVK6L9NvTJ4FJ4tCPIU3AU57WRpF5QyNMLzhhrWyV4SnjkQGtkyhAQ64OgtGaHlEJmCD1ZS-GM9a2a7ZYV700FvVynf99-4LtWblVAMNL1io2W7wiI6DQ16X0PwD0GLW0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4gHtSLCxp35-DRgS7T7UiIBBQIMWC4kZnXN4aYFEJbD_56Z9qKSzx4a5rOZDrb2773PkJubeARBoAMEDjjHkoW2rbLBNdrDKF0uWfynYcjvzflDzNvViN3m1wYRCzAZ9g0j0UsP15CblxlLW1Qafvb2yLbWu5zr8zW2ty7rltEJrXCYDGudcYqhmlbUavfeWobGJfXrLr4waVSiJLuPhl-DqJEkLw280w24f1Xfcb_jvKAHH8l7dHxRhwdkhomR2TvW73BBlmM1yYuY244WtL30FVFWkS18krb0-eUprk0vhmaLWlq_OQv1PDPszexNhlRFMqCTikVSWwaIYjUQKepFpAlvMCUaD0mk-79pNNjFdcCW2ghn7EYg8By0FExCOEjhEoICGNwIi4sC_XB178EKgo9J4Q4AlvYUiqhFRzdQvnuCaknywRPCQ0USBkFLipt7CAoKfUnIgLlxg73QzgjDTNn81VZTWNeTdf5369vyE5vMhzMB_3R4wXZNWtYwg0vST1b53ilVYJMXhc74QOgo7kB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=Predictive+motion+planning+for+AUVs+subject+to+strong+time-varying+currents+and+forecasting+uncertainties&rft.au=Huynh%2C+Van+T.&rft.au=Dunbabin%2C+Matthew&rft.au=Smith%2C+Ryan+N.&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1050-4729&rft.spage=1144&rft.epage=1151&rft_id=info:doi/10.1109%2FICRA.2015.7139335&rft.externalDocID=7139335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon