Predictive motion planning for AUVs subject to strong time-varying currents and forecasting uncertainties
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Contr...
Saved in:
Published in | Proceedings - IEEE International Conference on Robotics and Automation pp. 1144 - 1151 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1050-4729 |
DOI | 10.1109/ICRA.2015.7139335 |
Cover
Abstract | This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty. |
---|---|
AbstractList | This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty. |
Author | Smith, Ryan N. Dunbabin, Matthew Huynh, Van T. |
Author_xml | – sequence: 1 givenname: Van T. surname: Huynh fullname: Huynh, Van T. email: tv.huynh@qut.edu.au organization: Sch. of Electr. Eng. & Comput. Sci., Queensland Univ. of Technol., Brisbane, QLD, Australia – sequence: 2 givenname: Matthew surname: Dunbabin fullname: Dunbabin, Matthew email: m.dunbabin@qut.edu.au organization: Inst. for Future Environments, Queensland Univ. of Technol., Brisbane, QLD, Australia – sequence: 3 givenname: Ryan N. surname: Smith fullname: Smith, Ryan N. email: rnsmith@fortlewis.edu organization: Dept. of Phys. & Eng., Fort Lewis Coll., Durango, CO, USA |
BookMark | eNotUMtqAjEUTcFC1foBpZv8wEzzmEeyHKQPQWgptlu5Jjcl4mQkiUL_viN1dRbnwTlnRiZhCEjIA2cl50w_rZafXSkYr8uWSy1lfUMWulW8arVutJDVhEw5q1lRtULfkVlKe8aYlE0zJf4jovUm-zPSfsh-CPR4gBB8-KFuiLT7-k40nXZ7NJnmgaYch5HKvsfiDPH3ojOnGDHkRCHYiwkNpHwhTsFgzOBD9pjuya2DQ8LFFedk8_K8Wb4V6_fX1bJbF15wlQuLbcsECmcNQINGOQCjrBG6AsaQKzkONE6rWihjteHAdzsHrJGjwzVyTh7_Yz0ibo_R92PL7fUY-QfkglzE |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA.2015.7139335 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781479969234 1479969230 |
EndPage | 1151 |
ExternalDocumentID | 7139335 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i218t-de7702e2fdcaa6ec8faac8dc294a00e183335cf98528cd9c1a1bbfa063fdcf63 |
IEDL.DBID | RIE |
ISSN | 1050-4729 |
IngestDate | Wed Aug 27 02:16:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i218t-de7702e2fdcaa6ec8faac8dc294a00e183335cf98528cd9c1a1bbfa063fdcf63 |
OpenAccessLink | http://robotics.usc.edu/~ryan/Publications_files/ICRA_2015_Van.pdf |
PageCount | 8 |
ParticipantIDs | ieee_primary_7139335 |
PublicationCentury | 2000 |
PublicationDate | 2015-May |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-May |
PublicationDecade | 2010 |
PublicationTitle | Proceedings - IEEE International Conference on Robotics and Automation |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003366 |
Score | 1.8094115 |
Snippet | This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1144 |
SubjectTerms | Mathematical model Oceans Path planning Prediction algorithms Predictive models Uncertainty Vehicles |
Title | Predictive motion planning for AUVs subject to strong time-varying currents and forecasting uncertainties |
URI | https://ieeexplore.ieee.org/document/7139335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELaAqV36gKpveehYhzwckowIFdFKVKiCig3Zl3OFKgVEQof--p6TlD7UoVsUxZHjc3yv7-5j7MYDmWAEKABBChmiFrHnBUJJkjHEOpChrXceP_ZGM_kwD-cNdrurhUHEEnyGjr0sc_npCrY2VNYlh4r877DJmrTNqlqt3akbBGVekswFV0iyGOsMpucm3fvBU9-CuEKnfsEPJpVSkQwP2PhzChV-5NXZFtqB91_dGf87x0PW-SrZ45OdMjpiDcyO2f63boNttpxsbFbGnm-8Iu_h65qyiJPpyvuz55znW20jM7xY8dxGyV-4ZZ8Xb2pj66E4VO2ccq6y1A5CULkFTnNSjxW4wDZo7bDp8G46GImaaUEsScUXIsUocn30TQpK9RBioxTEKfiJVK6L9NvTJ4FJ4tCPIU3AU57WRpF5QyNMLzhhrWyV4SnjkQGtkyhAQ64OgtGaHlEJmCD1ZS-GM9a2a7ZYV700FvVynf99-4LtWblVAMNL1io2W7wiI6DQ16X0PwD0GLW0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4gHtSLCxp35-DRgS7T7UiIBBQIMWC4kZnXN4aYFEJbD_56Z9qKSzx4a5rOZDrb2773PkJubeARBoAMEDjjHkoW2rbLBNdrDKF0uWfynYcjvzflDzNvViN3m1wYRCzAZ9g0j0UsP15CblxlLW1Qafvb2yLbWu5zr8zW2ty7rltEJrXCYDGudcYqhmlbUavfeWobGJfXrLr4waVSiJLuPhl-DqJEkLw280w24f1Xfcb_jvKAHH8l7dHxRhwdkhomR2TvW73BBlmM1yYuY244WtL30FVFWkS18krb0-eUprk0vhmaLWlq_OQv1PDPszexNhlRFMqCTikVSWwaIYjUQKepFpAlvMCUaD0mk-79pNNjFdcCW2ghn7EYg8By0FExCOEjhEoICGNwIi4sC_XB178EKgo9J4Q4AlvYUiqhFRzdQvnuCaknywRPCQ0USBkFLipt7CAoKfUnIgLlxg73QzgjDTNn81VZTWNeTdf5369vyE5vMhzMB_3R4wXZNWtYwg0vST1b53ilVYJMXhc74QOgo7kB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=Predictive+motion+planning+for+AUVs+subject+to+strong+time-varying+currents+and+forecasting+uncertainties&rft.au=Huynh%2C+Van+T.&rft.au=Dunbabin%2C+Matthew&rft.au=Smith%2C+Ryan+N.&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1050-4729&rft.spage=1144&rft.epage=1151&rft_id=info:doi/10.1109%2FICRA.2015.7139335&rft.externalDocID=7139335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon |