Graphical Affine Algebra

Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably pow...

Full description

Saved in:
Bibliographic Details
Published in2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) pp. 1 - 12
Main Authors Bonchi, Filippo, Piedeleu, Robin, Sobocinski, Pawel, Zanasi, Fabio
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text
DOI10.1109/LICS.2019.8785877

Cover

Loading…
Abstract Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably powerful: it can model systems with richer patterns of behaviour such as mutual exclusion-with modules over the natural numbers as semantic domain-or non-passive electrical components-when considering modules over a certain field. Our main technical contribution is a complete axiomatisation for graphical affine algebra over these two interpretations. We also show, as case studies, how graphical affine algebra captures electrical circuits and the calculus of stateless connectors-a coordination language for distributed systems.
AbstractList Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably powerful: it can model systems with richer patterns of behaviour such as mutual exclusion-with modules over the natural numbers as semantic domain-or non-passive electrical components-when considering modules over a certain field. Our main technical contribution is a complete axiomatisation for graphical affine algebra over these two interpretations. We also show, as case studies, how graphical affine algebra captures electrical circuits and the calculus of stateless connectors-a coordination language for distributed systems.
Author Bonchi, Filippo
Sobocinski, Pawel
Piedeleu, Robin
Zanasi, Fabio
Author_xml – sequence: 1
  givenname: Filippo
  surname: Bonchi
  fullname: Bonchi, Filippo
  organization: Universitá di Pisa Pisa, Italy
– sequence: 2
  givenname: Robin
  surname: Piedeleu
  fullname: Piedeleu, Robin
  organization: University College London London, United Kingdom
– sequence: 3
  givenname: Pawel
  surname: Sobocinski
  fullname: Sobocinski, Pawel
  organization: University of Southampton Southampton, United Kingdom
– sequence: 4
  givenname: Fabio
  surname: Zanasi
  fullname: Zanasi, Fabio
  organization: University College London London, United Kingdom
BookMark eNotjrFOwzAQQI0EAy3soC79gQSf3eQuYxRBiRSJAZirs-8MlkIaBRb-nkp0ett7b2Uup-OkxtyDLQFs8zD03WvpLDQlIVWEeGFWgI7A15b8tbnbLzx_5sjjtk0pT7ptxw8NC9-Yq8Tjt96euTbvT49v3XMxvOz7rh2K7IB-ihiCoyiS6pikYkzgpdkFq1JVQZCc-oCQkqiwOyWFhU7EXXQcHVq_Npt_b1bVw7zkL15-D-dZ_wej1Dgi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2019.8785877
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728136083
9781728136080
EndPage 12
ExternalDocumentID 8785877
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i218t-cbb28cddf6cfd5a7f13d94b0ed55bd782e3b71ffdeda2608dad826074c2ac2703
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:01 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-cbb28cddf6cfd5a7f13d94b0ed55bd782e3b71ffdeda2608dad826074c2ac2703
OpenAccessLink https://discovery.ucl.ac.uk/10081075/1/paperLICS19.pdf
PageCount 12
ParticipantIDs ieee_primary_8785877
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
PublicationTitleAbbrev LICS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2266245
Snippet Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algebra
Calculus
Connectors
Gallium arsenide
Semantics
Syntactics
Wires
Title Graphical Affine Algebra
URI https://ieeexplore.ieee.org/document/8785877
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjyptFKf7MGjabvp5rHHUqxVrAha6K0kmYmI0orsXvz1Jru1onjwFkIgmZmEbybzAjhXCg2hcoznnFgmJWcmABGT2nBlLKGUMVF4dien8-xmIRYNuNjmwhBRFXxGvTisfPm4dmX8KutrpYVWqgnNcM3qXK2NozId5P3b6_FDjNUKwq_X_WiYUuHFZBdmXzvVYSIvvbKwPffxqwjjf4-yB53vzLzkfos5-9CgVRu6V7HqdOR2MvI-qI3J6PUpOoQ7MJ9cPo6nbNPxgD0HqC2Ys5Zrh-il8yiM8ukQ88wOCIWwGHhIQ6tS75HQBENEo8FgHgQtwHHjeHi8B9BarVfUhURZY5TFXOXKZmKAeRCVVTkZnlrUVhxCO1K1fKuLWiw3BB39PX0MO5GzdYzUCbSK95JOAxoX9qwSwyelS40H
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBgy-9-DRAlu2ryMxIigQEyHhRtpOa4wGjFku_nrbXcRoPHhrmibtzKT5ZjrzTQEuhUDtUFhCFXUk45wSHYCIcKmp0MYh55EoPBrz_jS7m7FZBa42XBjnXFF85ppxWOTycWlX8amsJYVkUogt2A64n7GSrbVOVaZt1RoOrh9jtVYwf7nyx5cpBWL09mD0tVdZKPLSXOWmaT9-tWH872H2of7NzUseNqhzABW3qEHjNvadjvpOut4HxzHpvj7FlHAdpr2byXWfrP88IM8BbHNijaHSInpuPTItfNpBlZm2Q8YMBi26jhGp9-hQh1BEosYQIAQ_wFJtabi-h1BdLBeuAYkwWguDSihhMtZGFYxlhHKapgalYUdQi1LN38q2FvO1QMd_T1_ATn8yGs6Hg_H9CexGLZcVU6dQzd9X7ixgc27OC5N8AjtZkFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+34th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science+%28LICS%29&rft.atitle=Graphical+Affine+Algebra&rft.au=Bonchi%2C+Filippo&rft.au=Piedeleu%2C+Robin&rft.au=Sobocinski%2C+Pawel&rft.au=Zanasi%2C+Fabio&rft.date=2019-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FLICS.2019.8785877&rft.externalDocID=8785877