Super resolution using edge prior and single image detail synthesis

Edge-directed image super resolution (SR) focuses on ways to remove edge artifacts in upsampled images. Under large magnification, however, textured regions become blurred and appear homogenous, resulting in a super-resolution image that looks unnatural. Alternatively, learning-based SR approaches u...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2400 - 2407
Main Authors Yu-Wing Tai, Shuaicheng Liu, Brown, M S, Lin, S
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Edge-directed image super resolution (SR) focuses on ways to remove edge artifacts in upsampled images. Under large magnification, however, textured regions become blurred and appear homogenous, resulting in a super-resolution image that looks unnatural. Alternatively, learning-based SR approaches use a large database of exemplar images for "hallucinating" detail. The quality of the upsampled image, especially about edges, is dependent on the suitability of the training images. This paper aims to combine the benefits of edge-directed SR with those of learning-based SR. In particular, we propose an approach to extend edge-directed super-resolution to include detail from an image/texture example provided by the user (e.g., from the Internet). A significant benefit of our approach is that only a single exemplar image is required to supply the missing detail - strong edges are obtained in the SR image even if they are not present in the example image due to the combination of the edge-directed approach. In addition, we can achieve quality results at very large magnification, which is often problematic for both edge-directed and learning-based approaches.
AbstractList Edge-directed image super resolution (SR) focuses on ways to remove edge artifacts in upsampled images. Under large magnification, however, textured regions become blurred and appear homogenous, resulting in a super-resolution image that looks unnatural. Alternatively, learning-based SR approaches use a large database of exemplar images for "hallucinating" detail. The quality of the upsampled image, especially about edges, is dependent on the suitability of the training images. This paper aims to combine the benefits of edge-directed SR with those of learning-based SR. In particular, we propose an approach to extend edge-directed super-resolution to include detail from an image/texture example provided by the user (e.g., from the Internet). A significant benefit of our approach is that only a single exemplar image is required to supply the missing detail - strong edges are obtained in the SR image even if they are not present in the example image due to the combination of the edge-directed approach. In addition, we can achieve quality results at very large magnification, which is often problematic for both edge-directed and learning-based approaches.
Author Shuaicheng Liu
Lin, S
Yu-Wing Tai
Brown, M S
Author_xml – sequence: 1
  surname: Yu-Wing Tai
  fullname: Yu-Wing Tai
  organization: Korean Adv. Inst. of Sci. & Technol., Daejeon, South Korea
– sequence: 2
  surname: Shuaicheng Liu
  fullname: Shuaicheng Liu
  organization: Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 3
  givenname: M S
  surname: Brown
  fullname: Brown, M S
  organization: Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 4
  givenname: S
  surname: Lin
  fullname: Lin, S
BookMark eNpNUM1Kw0AYXLWCTfUBxMu-QOrufttNvqMEq0JB8Q9vZZP9tq6kSckmh769EQt6GmYGhplJ2KRpG2LsUoq5lAKvi_en57kSI10sABHgiCVSK60N5vBxzKZSGEgNSjz5M3Q--WecsSTGLyEUZEpMWfEy7KjjHcW2HvrQNnyIodlwchviuy60HbeN4z9aTTxs7Sg76m2oedw3_SfFEM_Zqbd1pIsDztjb8va1uE9Xj3cPxc0qDUrmfZoLXfpSKFPlFVCmVGbdokLvfObRVJK0BwTlS4claGfRG68tCEIDmR4HztjVb24govVYbmu7_frwBHwDVK1Qwg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2010.5539933
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 142446983X
9781424469833
9781424469857
1424469856
EISSN 1063-6919
EndPage 2407
ExternalDocumentID 5539933
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i218t-804bfb026c8c3e7227ad5c9fdf7f96c1e4f3932fbd9b34da9f6f4a30e96374983
IEDL.DBID RIE
ISBN 1424469848
9781424469840
ISSN 1063-6919
IngestDate Wed Aug 27 02:49:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-804bfb026c8c3e7227ad5c9fdf7f96c1e4f3932fbd9b34da9f6f4a30e96374983
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/39998
PageCount 8
ParticipantIDs ieee_primary_5539933
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000451957
ssj0003211698
Score 2.281809
Snippet Edge-directed image super resolution (SR) focuses on ways to remove edge artifacts in upsampled images. Under large magnification, however, textured regions...
SourceID ieee
SourceType Publisher
StartPage 2400
SubjectTerms Asia
Frequency estimation
Image databases
Image reconstruction
Image resolution
Interpolation
Nearest neighbor searches
Statistical distributions
Strontium
Training data
Title Super resolution using edge prior and single image detail synthesis
URI https://ieeexplore.ieee.org/document/5539933
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTkwFWsQtD4ykTWI7jueKqkICVUBRtyq-UAWkVZMM8Ot5zoVADGx5T1HiWHb8fe9E6CqiSivuC49LST3gX4EnmYi92BhrExYDcXH5znf30WxBb5ds2UHXbS6MMaYMPjMjd1n68vVGFc5UNmaujCohXdQF4lblarX2lKpOCm9lAswmEq1HIXTdWErPZ0Q8GJFokrzgHho3tZ9quXF_Br4YT57nD1UEWP32H21YylNo2kd3zfir4JPXUZHLkfr8Vdrxvx-4j4bf-X543p5kB6hj0kPUrwEqrrd_BqqmB0SjG6DJY7EFGUh7vYaxi6R_wc5Mh7e79WaHk1Rjp3szeP0Ovy9cha3i7CMF9JmtsyFaTG-eJjOvbszgrQER5HCqUWklsDcVK2J4GPJEMyWsttyKSAWGWgK40EotJKE6ETayNCG-gd3OqYjJEeqlm9QcI-zziAGCkAGXhgaaSUalz4X04QmhlOwEDdw0rbZV7Y1VPUOnf6vP0F7l3XdWknPUy3eFuQDQkMvLcrV8AfUouCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0uNF2Xc9EggqEKBhuZN1as6iDsO2gf72v-zIaD972XpZ2bbq-3_tG6MqlQRhwW1hcSmqB_uVYkgnP8pTS2mceKC4m33k8cYdzer9giwa6rnNhlFJ58Jnqmsfclx-ugsyYym6YKaNKyBbaBrnPnCJbq7aoFJVSeE0T0G1cUfsUeqYfS-77dIkF3ySqNC94h3pV9aeSrhygji1u-s_TxyIGrJz_RyOWXA4NWmhcraAIP3ntZqnsBp-_ijv-d4l7qPOd8YentSzbRw0VH6BWCVFxeQEkwKq6QFS8Nuo_ZWugQW0vTzE2sfQv2Bjq8HoTrTbYj0NseG8KR-9wgeEicBUnHzHgzyRKOmg-uJ31h1bZmsGKABOkINeo1BL0t8ALiOK9HvdDFggdaq6FGziKagLIUMtQSEJDX2hXU5_YCv53ToVHDlEzXsXqCGGbuwwwhHS4VNQJmWRU2lxIG0boScmOUdts03JdVN9Yljt08jf7Eu0MZ-PRcnQ3eThFu4Wv39hMzlAz3WTqHCBEKi_yk_MFyMC7dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Super+resolution+using+edge+prior+and+single+image+detail+synthesis&rft.au=Yu-Wing+Tai&rft.au=Shuaicheng+Liu&rft.au=Brown%2C+M+S&rft.au=Lin%2C+S&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2400&rft.epage=2407&rft_id=info:doi/10.1109%2FCVPR.2010.5539933&rft.externalDocID=5539933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon