Employing machine learning techniques for detection and classification of phishing emails

A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing email...

Full description

Saved in:
Bibliographic Details
Published in2017 Computing Conference : 18-20 July 2017 pp. 149 - 156
Main Authors Moradpoor, Naghmeh, Clavie, Benjamin, Buchanan, Bill
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
DOI10.1109/SAI.2017.8252096

Cover

Abstract A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing emails cost UK consumers £174m in 2015, this paper proposal is driven by a problem whose resolution will have a great impact on people's lives in the UK and in the world. In this paper, we proposed a Neural Network (NN)-based model for detections and classifications of phishing emails using publically available email datasets for both benign and phishing emails. The results of the experiments are presented in order to demonstrate the effectiveness of the model in terms of accuracy, true-positive rate, false-positive rate, network performance and error histogram.
AbstractList A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing emails cost UK consumers £174m in 2015, this paper proposal is driven by a problem whose resolution will have a great impact on people's lives in the UK and in the world. In this paper, we proposed a Neural Network (NN)-based model for detections and classifications of phishing emails using publically available email datasets for both benign and phishing emails. The results of the experiments are presented in order to demonstrate the effectiveness of the model in terms of accuracy, true-positive rate, false-positive rate, network performance and error histogram.
Author Moradpoor, Naghmeh
Clavie, Benjamin
Buchanan, Bill
Author_xml – sequence: 1
  givenname: Naghmeh
  surname: Moradpoor
  fullname: Moradpoor, Naghmeh
  email: n.moradpoor@napier.ac.uk
  organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK
– sequence: 2
  givenname: Benjamin
  surname: Clavie
  fullname: Clavie, Benjamin
  email: benjaminclavie@gmail.com
  organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK
– sequence: 3
  givenname: Bill
  surname: Buchanan
  fullname: Buchanan, Bill
  email: b.buchanan@napier.ac.uk
  organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK
BookMark eNotkM9LwzAYhiMoqLN3wUv-gdb8aNrkOMZ0g4EH9eBpfE2-2Eib1qYe9t-76U4vPPA-vLy35DIOEQm556zgnJnH1-W2EIzXhRZKMFNdkMzUmitmmCpLqa5JltIXY4ybSsuK35CPdT92wyHET9qDbUNE2iFM8QRmtG0M3z-YqB8m6vAI5jBECtFR20FKwQcLf2jwdGxDak897CF06Y5ceegSZudckPen9dtqk-9enrer5S4PgtdzXmpgWh83S6215MaCdVCWorGV4tpWNXPKGc59bWutBPimcV5ocF6hQVXKBXn49wZE3I9T6GE67M8HyF93OVPV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SAI.2017.8252096
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509054435
150905443X
EndPage 156
ExternalDocumentID 8252096
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i217t-48a0880173888319cacda442bc6518c670d5d911f7c7852afbbdf28adf5e9e543
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i217t-48a0880173888319cacda442bc6518c670d5d911f7c7852afbbdf28adf5e9e543
OpenAccessLink https://doi.org/10.1109/SAI.2017.8252096
PageCount 8
ParticipantIDs ieee_primary_8252096
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 Computing Conference : 18-20 July 2017
PublicationTitleAbbrev SAI
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968361
Score 1.7935255
Snippet A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive...
SourceID ieee
SourceType Publisher
StartPage 149
SubjectTerms Artificial Intelligence
Cyberattacks
Cybersecurity
Electronic mail
Feature extraction
Intrusion Detection and Classification
Machine Learning
Maximum likelihood estimation
Neural Networks
Phishing Emails
Proposals
Spam Emails
Testing
Training
Web Attacks
Title Employing machine learning techniques for detection and classification of phishing emails
URI https://ieeexplore.ieee.org/document/8252096
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0_4wPjOHjy6hbbb7fZojARNMCZKgieyrypRCpFy8dc7uy0QjQdvTbObNvPYeew3MwCXoWHoFHBJVR4xykwuaYaCRK0IUZoVGhDu6p2HD3wwYvfjZNyAq00tjLXWg89s4B79Xb6Z65VLlXUxmonQ5W5CE8WsqtXa5lMyLmIerm8ie1n36frOQbfSoN72Y36KNx_9NgzXH65QI-_BqlSB_vrVk_G_f7YLnW2hHnncmKA9aNhiH9rrSQ2kVtwDeKkG--IaMvPoSUvqcRGvZNPFdUnQgSXGlh6dVRBZGKKdc-3QRJ6BZJ6TxVuVtSJ2Jqcfyw6M-rfPNwNaD1WgU4w-SsqExIMFyRJj7Iv6p6U2krFIaZ6EQvO0ZxKDJ2Ce6lQkkcyVMnkkpMkTm9mExYfQKuaFPQKSShmjOxcJp_oY9ghck_XiSMs4NZkRx3DgKDVZVH0zJjWRTv5-fQo7jlsVFPYMWuXnyp6jwS_Vhef0N4AdrCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf9uDRDdZ1XXc0RoIKxERI8ES6tlOiDCLj4l_v6zYgGg_emqXNmvf6-j76e-8BXHmaoVHApRMnlDlMJ9KJ8CA5Rnh4mmNUINzmO_f6vDNkD6NgVIHrdS6MMSYHnxnXDvO3fD1TSxsqa6I3Q9Hk3oJt1PssKLK1NhGViAufe6u3yFbUfL65t-Ct0C0X_uigkiuQdg16q18XuJF3d5nFrvr6VZXxv3vbg8YmVY88rZXQPlRMegC1Va8GUopuHV6K1r44h0xz_KQhZcOIV7Ku47ogaMISbbIcn5USmWqirHlt8UQ5C8ksIfO3Im5FzFROPhYNGLbvBrcdp2yr4EzQ_8gcJiReLUgWH71flEAllZaM0VjxwBOKhy0daLwDk1CFIqAyiWOdUCF1EpjIBMw_hGo6S80RkFBKHw06Kqzwo-MjcE7U8qmSfqgjLY6hbik1nheVM8YlkU7-_nwJO51Brzvu3vcfT2HXcq4Axp5BNftcmnNU_1l8kXP9G7Djr3k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Computing+Conference+%3A+18-20+July+2017&rft.atitle=Employing+machine+learning+techniques+for+detection+and+classification+of+phishing+emails&rft.au=Moradpoor%2C+Naghmeh&rft.au=Clavie%2C+Benjamin&rft.au=Buchanan%2C+Bill&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=149&rft.epage=156&rft_id=info:doi/10.1109%2FSAI.2017.8252096&rft.externalDocID=8252096