Employing machine learning techniques for detection and classification of phishing emails
A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing email...
Saved in:
Published in | 2017 Computing Conference : 18-20 July 2017 pp. 149 - 156 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SAI.2017.8252096 |
Cover
Abstract | A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing emails cost UK consumers £174m in 2015, this paper proposal is driven by a problem whose resolution will have a great impact on people's lives in the UK and in the world. In this paper, we proposed a Neural Network (NN)-based model for detections and classifications of phishing emails using publically available email datasets for both benign and phishing emails. The results of the experiments are presented in order to demonstrate the effectiveness of the model in terms of accuracy, true-positive rate, false-positive rate, network performance and error histogram. |
---|---|
AbstractList | A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive information or downloads malicious software through clicking on malicious links contained in the body of the email. Given that phishing emails cost UK consumers £174m in 2015, this paper proposal is driven by a problem whose resolution will have a great impact on people's lives in the UK and in the world. In this paper, we proposed a Neural Network (NN)-based model for detections and classifications of phishing emails using publically available email datasets for both benign and phishing emails. The results of the experiments are presented in order to demonstrate the effectiveness of the model in terms of accuracy, true-positive rate, false-positive rate, network performance and error histogram. |
Author | Moradpoor, Naghmeh Clavie, Benjamin Buchanan, Bill |
Author_xml | – sequence: 1 givenname: Naghmeh surname: Moradpoor fullname: Moradpoor, Naghmeh email: n.moradpoor@napier.ac.uk organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK – sequence: 2 givenname: Benjamin surname: Clavie fullname: Clavie, Benjamin email: benjaminclavie@gmail.com organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK – sequence: 3 givenname: Bill surname: Buchanan fullname: Buchanan, Bill email: b.buchanan@napier.ac.uk organization: Sch. of Comput., Edinburgh Napier Univ., Edinburgh, UK |
BookMark | eNotkM9LwzAYhiMoqLN3wUv-gdb8aNrkOMZ0g4EH9eBpfE2-2Eib1qYe9t-76U4vPPA-vLy35DIOEQm556zgnJnH1-W2EIzXhRZKMFNdkMzUmitmmCpLqa5JltIXY4ybSsuK35CPdT92wyHET9qDbUNE2iFM8QRmtG0M3z-YqB8m6vAI5jBECtFR20FKwQcLf2jwdGxDak897CF06Y5ceegSZudckPen9dtqk-9enrer5S4PgtdzXmpgWh83S6215MaCdVCWorGV4tpWNXPKGc59bWutBPimcV5ocF6hQVXKBXn49wZE3I9T6GE67M8HyF93OVPV |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SAI.2017.8252096 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781509054435 150905443X |
EndPage | 156 |
ExternalDocumentID | 8252096 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i217t-48a0880173888319cacda442bc6518c670d5d911f7c7852afbbdf28adf5e9e543 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i217t-48a0880173888319cacda442bc6518c670d5d911f7c7852afbbdf28adf5e9e543 |
OpenAccessLink | https://doi.org/10.1109/SAI.2017.8252096 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8252096 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 Computing Conference : 18-20 July 2017 |
PublicationTitleAbbrev | SAI |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968361 |
Score | 1.7935255 |
Snippet | A phishing email is a legitimate-looking email which is designed to fool the recipient into believing that it is a genuine email, and either reveals sensitive... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 149 |
SubjectTerms | Artificial Intelligence Cyberattacks Cybersecurity Electronic mail Feature extraction Intrusion Detection and Classification Machine Learning Maximum likelihood estimation Neural Networks Phishing Emails Proposals Spam Emails Testing Training Web Attacks |
Title | Employing machine learning techniques for detection and classification of phishing emails |
URI | https://ieeexplore.ieee.org/document/8252096 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0_4wPjOHjy6hbbb7fZojARNMCZKgieyrypRCpFy8dc7uy0QjQdvTbObNvPYeew3MwCXoWHoFHBJVR4xykwuaYaCRK0IUZoVGhDu6p2HD3wwYvfjZNyAq00tjLXWg89s4B79Xb6Z65VLlXUxmonQ5W5CE8WsqtXa5lMyLmIerm8ie1n36frOQbfSoN72Y36KNx_9NgzXH65QI-_BqlSB_vrVk_G_f7YLnW2hHnncmKA9aNhiH9rrSQ2kVtwDeKkG--IaMvPoSUvqcRGvZNPFdUnQgSXGlh6dVRBZGKKdc-3QRJ6BZJ6TxVuVtSJ2Jqcfyw6M-rfPNwNaD1WgU4w-SsqExIMFyRJj7Iv6p6U2krFIaZ6EQvO0ZxKDJ2Ce6lQkkcyVMnkkpMkTm9mExYfQKuaFPQKSShmjOxcJp_oY9ghck_XiSMs4NZkRx3DgKDVZVH0zJjWRTv5-fQo7jlsVFPYMWuXnyp6jwS_Vhef0N4AdrCw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf9uDRDdZ1XXc0RoIKxERI8ES6tlOiDCLj4l_v6zYgGg_emqXNmvf6-j76e-8BXHmaoVHApRMnlDlMJ9KJ8CA5Rnh4mmNUINzmO_f6vDNkD6NgVIHrdS6MMSYHnxnXDvO3fD1TSxsqa6I3Q9Hk3oJt1PssKLK1NhGViAufe6u3yFbUfL65t-Ct0C0X_uigkiuQdg16q18XuJF3d5nFrvr6VZXxv3vbg8YmVY88rZXQPlRMegC1Va8GUopuHV6K1r44h0xz_KQhZcOIV7Ku47ogaMISbbIcn5USmWqirHlt8UQ5C8ksIfO3Im5FzFROPhYNGLbvBrcdp2yr4EzQ_8gcJiReLUgWH71flEAllZaM0VjxwBOKhy0daLwDk1CFIqAyiWOdUCF1EpjIBMw_hGo6S80RkFBKHw06Kqzwo-MjcE7U8qmSfqgjLY6hbik1nheVM8YlkU7-_nwJO51Brzvu3vcfT2HXcq4Axp5BNftcmnNU_1l8kXP9G7Djr3k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Computing+Conference+%3A+18-20+July+2017&rft.atitle=Employing+machine+learning+techniques+for+detection+and+classification+of+phishing+emails&rft.au=Moradpoor%2C+Naghmeh&rft.au=Clavie%2C+Benjamin&rft.au=Buchanan%2C+Bill&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=149&rft.epage=156&rft_id=info:doi/10.1109%2FSAI.2017.8252096&rft.externalDocID=8252096 |