Deep Physiological Arousal Detection in a Driving Simulator Using Wearable Sensors
Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception, inadequate information processing, and sub-optimal arousal are possible causes of poor human performance. Understanding of these causes and the implementation of effective remedies is of key im...
Saved in:
Published in | IEEE ... International Conference on Data Mining workshops pp. 486 - 493 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-9259 |
DOI | 10.1109/ICDMW.2017.69 |
Cover
Loading…
Abstract | Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception, inadequate information processing, and sub-optimal arousal are possible causes of poor human performance. Understanding of these causes and the implementation of effective remedies is of key importance to increase traffic safety and improve driver's well-being. For this purpose, we used deep learning algorithms to detect arousal level, namely, under-aroused, normal and over-aroused for professional truck drivers in a simulated environment. The physiological signals are collected from 11 participants by wrist wearable devices. We presented a cost effective ground-truth generation scheme for arousal based on a subjective measure of sleepiness and score of stress stimuli. On this dataset, we evaluated a range of deep neural network models for representation learning as an alternative to handcrafted feature extraction. Our results show that a 7-layers convolutional neural network trained on raw physiological signals (such as heart rate, skin conductance and skin temperature) outperforms a baseline neural network and denoising autoencoder models with weighted F-score of 0.82 vs. 0.75 and Kappa of 0.64 vs. 0.53, respectively. The proposed convolutional model not only improves the overall results but also enhances the detection rate for every driver in the dataset as determined by leave-one-subject-out cross-validation. |
---|---|
AbstractList | Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception, inadequate information processing, and sub-optimal arousal are possible causes of poor human performance. Understanding of these causes and the implementation of effective remedies is of key importance to increase traffic safety and improve driver's well-being. For this purpose, we used deep learning algorithms to detect arousal level, namely, under-aroused, normal and over-aroused for professional truck drivers in a simulated environment. The physiological signals are collected from 11 participants by wrist wearable devices. We presented a cost effective ground-truth generation scheme for arousal based on a subjective measure of sleepiness and score of stress stimuli. On this dataset, we evaluated a range of deep neural network models for representation learning as an alternative to handcrafted feature extraction. Our results show that a 7-layers convolutional neural network trained on raw physiological signals (such as heart rate, skin conductance and skin temperature) outperforms a baseline neural network and denoising autoencoder models with weighted F-score of 0.82 vs. 0.75 and Kappa of 0.64 vs. 0.53, respectively. The proposed convolutional model not only improves the overall results but also enhances the detection rate for every driver in the dataset as determined by leave-one-subject-out cross-validation. |
Author | Van Keulen, Maurice Trajanovski, Stojan Saeed, Aaqib Van Erp, Jan |
Author_xml | – sequence: 1 givenname: Aaqib surname: Saeed fullname: Saeed, Aaqib email: a.saeed@student.utwente.nl organization: University of Twente, Enschede, Netherlands – sequence: 2 givenname: Stojan surname: Trajanovski fullname: Trajanovski, Stojan email: stojan.trajanovski@philips.com organization: Philips Research, Eindhoven, Netherlands – sequence: 3 givenname: Maurice surname: Van Keulen fullname: Van Keulen, Maurice email: m.vankeulen@utwente.nl organization: University of Twente, Enschede, Netherlands – sequence: 4 givenname: Jan surname: Van Erp fullname: Van Erp, Jan email: jan.vanerp@utwente.nl organization: University of Twente, Enschede, Netherlands |
BookMark | eNotzMFOAjEUQNFqNBGQpSs3_YHB13baaZeEESXBaETCkjzLA2uGKWkHE_5eja5O7ub22UUbW2LsRsBICHB3s0n9tBpJENXIuDPWF1pZoyyAPGc9qSpdOKndFRvm_AkAwqnSOdljrzXRgb98nHKITdwFjw0fp3jMP9bUke9CbHloOfI6ha_Q7vgi7I8NdjHxZf7tFWHC94b4gtocU75ml1tsMg3_HbDl9P5t8ljMnx9mk_G8CFKUXUFI2huhvTKoSElUSKittCVVXm1gY1Fq6b1FC6bawkZ7L0GWZkvGOu_UgN3-fQMRrQ8p7DGd1lYKXYFQ30-1UUY |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDMW.2017.69 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1538638002 9781538638002 |
EISSN | 2375-9259 |
EndPage | 493 |
ExternalDocumentID | 8215701 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i214t-eae5c615c36a3e32a3aea58284e7c3d0d8a252cc8a8067f0d5cc20246fe689c93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 06:02:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i214t-eae5c615c36a3e32a3aea58284e7c3d0d8a252cc8a8067f0d5cc20246fe689c93 |
OpenAccessLink | https://research.utwente.nl/en/publications/24d4687f-cb3f-43e5-af6a-c9d0126b5db7 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8215701 |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov. |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
PublicationDecade | 2010 |
PublicationTitle | IEEE ... International Conference on Data Mining workshops |
PublicationTitleAbbrev | ICDMW |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001934992 |
Score | 1.7725124 |
Snippet | Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception, inadequate information processing, and sub-optimal... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 486 |
SubjectTerms | Arousal Detection Convolutional Neural Network Deep Learning Driving Simulator Feature extraction Heart rate Physiology Skin Sleep Stress Wearable Sensors |
Title | Deep Physiological Arousal Detection in a Driving Simulator Using Wearable Sensors |
URI | https://ieeexplore.ieee.org/document/8215701 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXi0XUzTHznK6pjCRJxju400fYUitqN2F_96X9JtBfHgqaUEWl5Iv3wv3_ceIbepyjIWhqGjRMgcwZlwEqnASTSCl8544KdWbfESTObieekvO-Ru74UBACs-A9fc2rP8tNQbkyobRohPoTFrHSBxa7xabT5Ferh5520ZzeHTKJ4ujHgrdK2cuW2eYrFj3CPT3VsbyciHu6kTV3__Ksj43886IoPWpUdf9_hzTDpQnJDerk0D3a7aPnmLAdbUSj13fzr6UCHjx2sMtdViFTQvqKJxlZsEA53ln6atV1lRKymgC1wPxmNFZ8h6y-prQObjx_fRxNm2UnByfi9qBxT4Gjcv2guUBx5XngJlTswEhNpLWRop7nOtIxUhfGUs9bXmCN9BBkEktfROSbcoCzgjlGU4EAm1jHwhFAY6MQ2slZRCM2SL2TnpmxCt1k21jNU2Ohd_P74kh2aGGnffFenW1QauEebr5MbO7w9OCahw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOjJDzB-uwePtpTt9utoqAQUiBEI3Mh2O00aY0tqufjrnd0CTYwHT22aTdrMZvt2Zt-bR8hDLJLE8jzPENyzDM4sbkSBACOSCF4yYa4Ta7bFxB3M-cvSWTbI414LAwCafAamutVn-XEuN6pU1vERnzwl1jpA3He6lVqrrqgENm7fWd1IszPsheOFom95piY01_YpGj36x2S8e29FGvkwN2Vkyu9fLRn_-2EnpF3r9OjbHoFOSQOyM3K8M2qg23XbIu8hwJpqsufuX0efCsz58RpCqdlYGU0zKmhYpKrEQKfppzL2yguqSQV0gStCqazoFPPevPhqk3n_edYbGFszBSNlXV4aIMCRuH2RtitssJmwBQh1ZsbBk3Zsxb5gDpPSFz4CWGLFjpQMAdxNwPUDGdjnpJnlGVwQaiU4EFPqwHc4FxjoSFlYiyDg0sJ8MbkkLRWi1brql7HaRufq78f35HAwG49Wo-Hk9ZocqdmqtH43pFkWG7hF0C-jOz3XP0eSq7k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Deep+Physiological+Arousal+Detection+in+a+Driving+Simulator+Using+Wearable+Sensors&rft.au=Saeed%2C+Aaqib&rft.au=Trajanovski%2C+Stojan&rft.au=Van+Keulen%2C+Maurice&rft.au=Van+Erp%2C+Jan&rft.date=2017-11-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=486&rft.epage=493&rft_id=info:doi/10.1109%2FICDMW.2017.69&rft.externalDocID=8215701 |