Sharing without Showing: Secure Cloud Analytics with Trusted Execution Environments

Many applications benefit from computations over the data of multiple users while preserving confidentiality. We present a solution where multiple mutually distrusting users' data can be aggregated with an acceptable overhead, while allowing users to be added to the system at any time without r...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Secure Development Conference (SecDev) pp. 105 - 116
Main Authors Birgersson, Marcus, Artho, Cyrille, Balliu, Musard
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.10.2024
Subjects
Online AccessGet full text
DOI10.1109/SecDev61143.2024.00016

Cover

Abstract Many applications benefit from computations over the data of multiple users while preserving confidentiality. We present a solution where multiple mutually distrusting users' data can be aggregated with an acceptable overhead, while allowing users to be added to the system at any time without re-encrypting data. Our solution to this problem is to use a Trusted Execution Environment (Intel SGX) for the computation, while the confidential data is encrypted with the data owner's key and can be stored anywhere, without trust in the service provider. We do not require the user to be online during the computation phase and do not require a trusted party to store data in plain text. Still, the computation can only be carried out if the data owner explicitly has given permission.Experiments using common functions such as the sum, least square fit, histogram, and SVM classification, exhibit an average overhead of 1.6×. In addition to these performance experiments, we present a use case for computing the distributions of taxis in a city without revealing the position of any other taxi to the other parties.
AbstractList Many applications benefit from computations over the data of multiple users while preserving confidentiality. We present a solution where multiple mutually distrusting users' data can be aggregated with an acceptable overhead, while allowing users to be added to the system at any time without re-encrypting data. Our solution to this problem is to use a Trusted Execution Environment (Intel SGX) for the computation, while the confidential data is encrypted with the data owner's key and can be stored anywhere, without trust in the service provider. We do not require the user to be online during the computation phase and do not require a trusted party to store data in plain text. Still, the computation can only be carried out if the data owner explicitly has given permission.Experiments using common functions such as the sum, least square fit, histogram, and SVM classification, exhibit an average overhead of 1.6×. In addition to these performance experiments, we present a use case for computing the distributions of taxis in a city without revealing the position of any other taxi to the other parties.
Author Balliu, Musard
Birgersson, Marcus
Artho, Cyrille
Author_xml – sequence: 1
  givenname: Marcus
  surname: Birgersson
  fullname: Birgersson, Marcus
  email: marbir@kth.se
  organization: KTH Royal Institute of Technology
– sequence: 2
  givenname: Cyrille
  surname: Artho
  fullname: Artho, Cyrille
  email: artho@kth.se
  organization: KTH Royal Institute of Technology
– sequence: 3
  givenname: Musard
  surname: Balliu
  fullname: Balliu, Musard
  email: musard@kth.se
  organization: KTH Royal Institute of Technology
BookMark eNotjN1KwzAYQCPohc69gUheoDVfkqaNd2PWHxh40Xk9svSLDXSppOnm3t6iXh0OHM4NuQxDQELugeUATD80aJ_wqACkyDnjMmeMgbogS13qShRMaNCCXZOm6Uz04ZOefOqGKdGmG06zP9L5MEWk636YWroKpj8nb8ffjm7jNCZsaf09R8kPgdbh6OMQDhjSeEuunOlHXP5zQT6e6-36Ndu8v7ytV5vMc5Apa9UerFVaKFNwhQaUQFmoympXWobWtZJLXVXgDBcgXWtKrvZWG10oZ4wRC3L39_WIuPuK_mDieQesFJIVlfgB1blQiQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SecDev61143.2024.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350391930
EndPage 116
ExternalDocumentID 10734058
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i214t-d6b1cc6936a526ea163e4568c9f7c0ecfd4249881fa2314fda726bc9a956faaa3
IEDL.DBID RIE
IngestDate Wed Nov 06 05:53:26 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i214t-d6b1cc6936a526ea163e4568c9f7c0ecfd4249881fa2314fda726bc9a956faaa3
PageCount 12
ParticipantIDs ieee_primary_10734058
PublicationCentury 2000
PublicationDate 2024-Oct.-7
PublicationDateYYYYMMDD 2024-10-07
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2024 IEEE Secure Development Conference (SecDev)
PublicationTitleAbbrev SECDEV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8872681
Snippet Many applications benefit from computations over the data of multiple users while preserving confidentiality. We present a solution where multiple mutually...
SourceID ieee
SourceType Publisher
StartPage 105
SubjectTerms Cloud computing
Confidential computation
Cryptography
Histograms
Internet of Things
Multi-party computation
Public transportation
SGX
Software
Support vector machines
Trusted execution platform
Urban areas
Title Sharing without Showing: Secure Cloud Analytics with Trusted Execution Environments
URI https://ieeexplore.ieee.org/document/10734058
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uTz6pWPE3efA1sz_SJPV1bgzBIXSDvY0kvaAoq0g7xb_eS7bpEATfmhJouUu57673fUfIleNGWpNYlgjlGHepZQZxOUMw6mTOhVZBdvF-LEZTfjfLZ2uyeuDCAEBoPoOevwz_8qvatr5Uhl-4zBBgqA7p4DlbkbXWrN8kLq5LsLewFIjwM0z8Ui-LHfs55ltjU0LUGO6R8eZ5q2aR517bmJ79_CXF-O8X2ifRD0GPPnyHngOyA4tDUnrxZVxSX1ut24aWj_U7rm9oKKoD7b_UbUWDDIkXZw776MSTLqCigw_c5L1EB1vct4hMh4NJf8TWMxPYU5rwhlUCDW9FkQmdpwI0wi1AjKQsmt7GYF3FMeFSKnEakR13lZapMLbQmCc5rXV2RLqLegHHhCIYctb5wRzScB0b5UwBJjYIEPH45fKERN4i89eVLMZ8Y4zTP-6fkV3vldAJJ89Jt3lr4QIjemMugye_AP25pEI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46H_RJxYm_zYOvmf2RJq2vc2PqNoRtsLeRpBcUpRVpVfzrvWSbDkHwrSmBlruU--5633eEXFiupdGhYaFILeM2MkwjLmcIRq1MuFCpl10cDEVvwm-nyXRBVvdcGADwzWfQcpf-X35emtqVyvALlzECjHSdbGDg58mcrrXg_YZBdjkCcw1vAjF-jKlf5ISxAzfJfGVwio8b3W0yXD5x3i7y1Kor3TKfv8QY__1KO6T5Q9Gj99_BZ5esQbFHRk5-GZfUVVfLuqKjh_Id11fUl9WBtp_LOqdeiMTJM_t9dOxoF5DTzgducn6inRX2W5NMup1xu8cWUxPYYxTyiuUCTW9EFguVRAIUAi5AlJQaNL4JwNicY8qVpqFViO24zZWMhDaZwkzJKqXifdIoygIOCEU4ZI11ozmk5irQqdUZ6EAjRMQDmMhD0nQWmb3MhTFmS2Mc_XH_nGz2xoP-rH8zvDsmW85Dvi9OnpBG9VrDKcb3Sp95r34BxBenjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Secure+Development+Conference+%28SecDev%29&rft.atitle=Sharing+without+Showing%3A+Secure+Cloud+Analytics+with+Trusted+Execution+Environments&rft.au=Birgersson%2C+Marcus&rft.au=Artho%2C+Cyrille&rft.au=Balliu%2C+Musard&rft.date=2024-10-07&rft.pub=IEEE&rft.spage=105&rft.epage=116&rft_id=info:doi/10.1109%2FSecDev61143.2024.00016&rft.externalDocID=10734058