Randomized trees for real-time keypoint recognition

In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to im...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 775 - 781 vol. 2
Main Authors Lepetit, V., Lagger, P., Fua, P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.288

Cover

Loading…
Abstract In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to implement. It has proved effective but still too slow for real-time use. In this paper, we advocate instead the use of randomized trees as the classification technique. It is both fast enough for real-time performance and more robust. It also gives us a principled way not only to match keypoints but to select during a training phase those that are the most recognizable ones. This results in a real-time system able to detect and position in 3D planar, non-planar, and even deformable objects. It is robust to illuminations changes, scale changes and occlusions.
AbstractList In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to implement. It has proved effective but still too slow for real-time use. In this paper, we advocate instead the use of randomized trees as the classification technique. It is both fast enough for real-time performance and more robust. It also gives us a principled way not only to match keypoints but to select during a training phase those that are the most recognizable ones. This results in a real-time system able to detect and position in 3D planar, non-planar, and even deformable objects. It is robust to illuminations changes, scale changes and occlusions.
Author Lepetit, V.
Fua, P.
Lagger, P.
Author_xml – sequence: 1
  givenname: V.
  surname: Lepetit
  fullname: Lepetit, V.
  organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland
– sequence: 2
  givenname: P.
  surname: Lagger
  fullname: Lagger, P.
  organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland
– sequence: 3
  givenname: P.
  surname: Fua
  fullname: Fua, P.
  organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland
BookMark eNpNjM1Kw0AURgetYFu7dOUmL5B4753J_CwlaBUKSlG3ZdLcyGgzU5Js6tMb0IVn88H54CzELKbIQlwjFIjgbqv3l21BAGVB1p6JOYKWuXbozsUCjHYlSUM0-3dcitUwfMKEdNIqmgu59bFJXfjmJht75iFrU5_17A_5GDrOvvh0TCGOk9qnjxjGkOKVuGj9YeDV3y7F28P9a_WYb57XT9XdJg-Easx9A7ptLHokKPfWKbCskZQiRwwo68aYmj1qtjA5bx1ZaHXpWUlsayOX4ua3G5h5d-xD5_vTDpU2JaH8AZHPRxI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.288
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 781 vol. 2
ExternalDocumentID 1467521
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i214t-ad06fd81a1205c89408e61244292e013bd77bea16e80429a89280f65ae431fb73
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i214t-ad06fd81a1205c89408e61244292e013bd77bea16e80429a89280f65ae431fb73
OpenAccessLink http://infoscience.epfl.ch/record/64669
ParticipantIDs ieee_primary_1467521
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.128238
Snippet In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all...
SourceID ieee
SourceType Publisher
StartPage 775
SubjectTerms Cameras
Classification tree analysis
Computer vision
Laboratories
Lighting
Nearest neighbor searches
Object detection
Real time systems
Robustness
Title Randomized trees for real-time keypoint recognition
URI https://ieeexplore.ieee.org/document/1467521
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeKtDIy4dZzEseeKqkIqqiqKulV2YksVkFQ0XfrrucsLhBjY4kuGxI593z0_Qu4ZVwmPtaBxYMFAAQ1ODQtS6gN61qF0sC5Y7zx7FtNl-LSKVh3y0NbCWGvL5DM7xMsylp_myR5dZSPc1RFWjR-B4VbVarX-FKwxlbWZh-MALBuh2ogCRzaWMvIpAiqUryoTXkV4g9edeJqx-m7GORq_zheV64UjO8sPCpZSA016ZNa8e5V48jbcF2aYHH61dfzvx52QwXetnzdvtdgp6djsjPRqcOrVW38Hoob_oZH1SbDQWZp_bA7wIAa3dx4gYA9Q6DtFynoPzodtvskKr81SyrMBWU4eX8ZTWpMw0A33w4LqlAmXSl_7nEWJVCGTViAo4IpbwI8mjWNjtS-sRN2mpeKSORFpC9DEmTg4J90sz-wF8VgitOFWuEAB6nFOujBBivM4hIMh1eyS9HFa1tuqz8a6npGrv8XX5Lhso1q6Q25It_jc21sACIW5K_-ML8zyrz8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHvSECsZvd_Booeu2rj0TCSoQQsBwI93WJUTdiIwLf73v7QtjPHhb33bY2rXv9z5_hDwwrkLua0F9x4CBAhqcBsyJqA3oWbsyhnXBeufRWAzm7svCWzTIY10LY4zJk89MBy_zWH6Uhlt0lXVxV3tYNX4Iet9VRbVW7VHBKlNZGno4dsC2EaqOKXDkY8ljn8KhQtmqMOKVhzd42YunGqt9O85u720yLZwvHPlZfpCw5Dqo3ySj6u2L1JP3zjYLOuHuV2PH_37eCWnvq_2sSa3HTknDJGekWcJTq9z8GxBVDBCVrEWcqU6i9HO1gwcxvL2xAANbgEM_KJLWW3BCrNNVkll1nlKatMm8_zTrDWhJw0BX3HYzqiMm4kja2ubMC6VymTQCYQFX3ACCDCLfD4y2hZGo3bRUXLJYeNoAOIkD3zknB0mamAtisVDogBsROwpwTxzL2A2R5Nx34WiINLskLZyW5brotLEsZ-Tqb_E9ORrMRsPl8Hn8ek2O86aquXPkhhxkX1tzC3AhC-7yv-QbOz6yjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Randomized+trees+for+real-time+keypoint+recognition&rft.au=Lepetit%2C+V.&rft.au=Lagger%2C+P.&rft.au=Fua%2C+P.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=775&rft.epage=781+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.288&rft.externalDocID=1467521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon