Randomized trees for real-time keypoint recognition
In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to im...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 775 - 781 vol. 2 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.288 |
Cover
Loading…
Abstract | In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to implement. It has proved effective but still too slow for real-time use. In this paper, we advocate instead the use of randomized trees as the classification technique. It is both fast enough for real-time performance and more robust. It also gives us a principled way not only to match keypoints but to select during a training phase those that are the most recognizable ones. This results in a real-time system able to detect and position in 3D planar, non-planar, and even deformable objects. It is robust to illuminations changes, scale changes and occlusions. |
---|---|
AbstractList | In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to implement. It has proved effective but still too slow for real-time use. In this paper, we advocate instead the use of randomized trees as the classification technique. It is both fast enough for real-time performance and more robust. It also gives us a principled way not only to match keypoints but to select during a training phase those that are the most recognizable ones. This results in a real-time system able to detect and position in 3D planar, non-planar, and even deformable objects. It is robust to illuminations changes, scale changes and occlusions. |
Author | Lepetit, V. Fua, P. Lagger, P. |
Author_xml | – sequence: 1 givenname: V. surname: Lepetit fullname: Lepetit, V. organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland – sequence: 2 givenname: P. surname: Lagger fullname: Lagger, P. organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland – sequence: 3 givenname: P. surname: Fua fullname: Fua, P. organization: Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland |
BookMark | eNpNjM1Kw0AURgetYFu7dOUmL5B4753J_CwlaBUKSlG3ZdLcyGgzU5Js6tMb0IVn88H54CzELKbIQlwjFIjgbqv3l21BAGVB1p6JOYKWuXbozsUCjHYlSUM0-3dcitUwfMKEdNIqmgu59bFJXfjmJht75iFrU5_17A_5GDrOvvh0TCGOk9qnjxjGkOKVuGj9YeDV3y7F28P9a_WYb57XT9XdJg-Easx9A7ptLHokKPfWKbCskZQiRwwo68aYmj1qtjA5bx1ZaHXpWUlsayOX4ua3G5h5d-xD5_vTDpU2JaH8AZHPRxI |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.288 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 781 vol. 2 |
ExternalDocumentID | 1467521 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i214t-ad06fd81a1205c89408e61244292e013bd77bea16e80429a89280f65ae431fb73 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i214t-ad06fd81a1205c89408e61244292e013bd77bea16e80429a89280f65ae431fb73 |
OpenAccessLink | http://infoscience.epfl.ch/record/64669 |
ParticipantIDs | ieee_primary_1467521 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.128238 |
Snippet | In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 775 |
SubjectTerms | Cameras Classification tree analysis Computer vision Laboratories Lighting Nearest neighbor searches Object detection Real time systems Robustness |
Title | Randomized trees for real-time keypoint recognition |
URI | https://ieeexplore.ieee.org/document/1467521 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeKtDIy4dZzEseeKqkIqqiqKulV2YksVkFQ0XfrrucsLhBjY4kuGxI593z0_Qu4ZVwmPtaBxYMFAAQ1ODQtS6gN61qF0sC5Y7zx7FtNl-LSKVh3y0NbCWGvL5DM7xMsylp_myR5dZSPc1RFWjR-B4VbVarX-FKwxlbWZh-MALBuh2ogCRzaWMvIpAiqUryoTXkV4g9edeJqx-m7GORq_zheV64UjO8sPCpZSA016ZNa8e5V48jbcF2aYHH61dfzvx52QwXetnzdvtdgp6djsjPRqcOrVW38Hoob_oZH1SbDQWZp_bA7wIAa3dx4gYA9Q6DtFynoPzodtvskKr81SyrMBWU4eX8ZTWpMw0A33w4LqlAmXSl_7nEWJVCGTViAo4IpbwI8mjWNjtS-sRN2mpeKSORFpC9DEmTg4J90sz-wF8VgitOFWuEAB6nFOujBBivM4hIMh1eyS9HFa1tuqz8a6npGrv8XX5Lhso1q6Q25It_jc21sACIW5K_-ML8zyrz8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHvSECsZvd_Booeu2rj0TCSoQQsBwI93WJUTdiIwLf73v7QtjPHhb33bY2rXv9z5_hDwwrkLua0F9x4CBAhqcBsyJqA3oWbsyhnXBeufRWAzm7svCWzTIY10LY4zJk89MBy_zWH6Uhlt0lXVxV3tYNX4Iet9VRbVW7VHBKlNZGno4dsC2EaqOKXDkY8ljn8KhQtmqMOKVhzd42YunGqt9O85u720yLZwvHPlZfpCw5Dqo3ySj6u2L1JP3zjYLOuHuV2PH_37eCWnvq_2sSa3HTknDJGekWcJTq9z8GxBVDBCVrEWcqU6i9HO1gwcxvL2xAANbgEM_KJLWW3BCrNNVkll1nlKatMm8_zTrDWhJw0BX3HYzqiMm4kja2ubMC6VymTQCYQFX3ACCDCLfD4y2hZGo3bRUXLJYeNoAOIkD3zknB0mamAtisVDogBsROwpwTxzL2A2R5Nx34WiINLskLZyW5brotLEsZ-Tqb_E9ORrMRsPl8Hn8ek2O86aquXPkhhxkX1tzC3AhC-7yv-QbOz6yjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Randomized+trees+for+real-time+keypoint+recognition&rft.au=Lepetit%2C+V.&rft.au=Lagger%2C+P.&rft.au=Fua%2C+P.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=775&rft.epage=781+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.288&rft.externalDocID=1467521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |