Activity recognition and abnormality detection with the switching hidden semi-Markov model

This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the a...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 838 - 845 vol. 1
Main Authors Duong, T.V., Bui, H.H., Phung, D.Q., Venkatesh, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the switching hidden semi-markov model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.
AbstractList This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the switching hidden semi-markov model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.
Author Bui, H.H.
Venkatesh, S.
Duong, T.V.
Phung, D.Q.
Author_xml – sequence: 1
  givenname: T.V.
  surname: Duong
  fullname: Duong, T.V.
  organization: Dept. of Comput., Curtin Univ. of Technol., Perth, WA, Australia
– sequence: 2
  givenname: H.H.
  surname: Bui
  fullname: Bui, H.H.
– sequence: 3
  givenname: D.Q.
  surname: Phung
  fullname: Phung, D.Q.
– sequence: 4
  givenname: S.
  surname: Venkatesh
  fullname: Venkatesh, S.
BookMark eNpNjjtPwzAYRS0oEm3pxsbiP5Dgt-OxiqAgFYEQMLBUjv2lMSQOSqyi_nvKY-Au50pHurozNIl9BITOKckpJeayfHl4zBkhMlf0CE0pUTxThppjNCNaGcm4ZmzyT5yixTi-kUO44YVgU_S6dCnsQtrjAVy_jSGFPmIbPbZV7IfOtt_OQwL3Yz5DanBqAI-H5poQt7gJ3kPEI3Qhu7PDe7_DXe-hPUMntW1HWPxxjp6vr57Km2x9v7otl-ssMMpTVmsHRGnNKChra2WltLKW_HCXVEIZIipaeKqqggjQQvlaKu00cMcLYljF5-jidzcAwOZjCJ0d9hsqlOZS8C_NQlXz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.61
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 845 vol. 1
ExternalDocumentID 1467354
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i213t-f7ce067721e6aaf6a55a5f539190b46904b18d16b804e746df567c7e3c38092b3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i213t-f7ce067721e6aaf6a55a5f539190b46904b18d16b804e746df567c7e3c38092b3
OpenAccessLink https://espace.curtin.edu.au/bitstream/20.500.11937/10349/2/116823_Activity%2520recognition%2520PID%2520116823.pdf
ParticipantIDs ieee_primary_1467354
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.1566463
Snippet This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a...
SourceID ieee
SourceType Publisher
StartPage 838
SubjectTerms Aging
Artificial intelligence
Atomic layer deposition
Buildings
Computational modeling
Hidden Markov models
Humans
Learning
Pervasive computing
Training data
Title Activity recognition and abnormality detection with the switching hidden semi-Markov model
URI https://ieeexplore.ieee.org/document/1467354
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT558VPHNHjy6bZJ9JHuUYhFBKaIiXso-ZlHEVGzqwV9vZpNGEA_edieXZMiy38x88w0hpyExIXjPmTc-MOGkYtrrwLwE4KrQCFGRbXGjLu_F1aN87JGzrhcGACL5DIa4jLV8P3dLTJWN8FRzKdbIWh24Nb1aXT4Fe0yLNszDPa8jG6W7ikKG01hi5VNxpnSqmxBeS3yQtUo8q73uGPJ6NH6Y3japl6ij_TOBJV5Akw1yvXr1hnfyOlxWdui-fqk6_vfbNsnOT6sfnXaX2BbpQblNNlpsStuTv6hNq_EPK9uAPJ27ZvQE7VhI85Ka0lNjS4TCiPCphyqyvUqKKV9a4026qFeRwkmfUcCkpAt4e2HYNTT_pHE0zw65n1zcjS9ZO6qBvWQpr1jIHaAWXZaCMiYoI6WRQfLa0YnFCFzYtPCpskUiIBfKB6lylwN3vEh0Zvku6ZfzEvYINdylic2sEC4T1tf4KXGFswC5kzkkbp8M0Huz90aNY9Y67uBv8yFZj2KrMWlyRPrVxxKOaxhR2ZP4_3wDAIbAjg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELU4Cqi4xY0LSrwk8ZG4RAi0nEIIEKJZ-RgLhMgiNkvB15NxskFCFHT2pEmsWPNm5s0bQvZDYkLwnjNvfGDCScW014F5CcBVoRGiItviWvXvxfmjfJwiB10vDABE8hn0cBlr-X7oxpgqO8RbzaWYJrO135dp063VZVSwy7RoAz3c8zq2UbqrKWQ4jyXWPhVnSqe6CeK1xAdZq8Uz2euOI68Pjx9ubpvkS1TS_pnBEl3Q6QK5mrx8wzx57Y0r23Nfv3Qd__t1i2T1p9mP3nRubIlMQblMFlp0Stu7P6pNkwEQE9sKeTpyzfAJ2vGQhiU1pafGlgiGEeNTD1Xke5UUk760Rpx0VK8iiZM-o4RJSUfw9sKwb2j4SeNwnlVyf3pyd9xn7bAG9pKlvGIhd4BqdFkKypigjJRGBsnrg04sxuDCpoVPlS0SAblQPkiVuxy440WiM8vXyEw5LGGdUMNdmtjMCuEyYX2NoBJXOAuQO5lD4jbICp7e4L3R4xi0B7f5t3mPzPXvri4Hl2fXF1tkPkqvxhTKNpmpPsawU4OKyu7Gf-kbQNbD1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Activity+recognition+and+abnormality+detection+with+the+switching+hidden+semi-Markov+model&rft.au=Duong%2C+T.V.&rft.au=Bui%2C+H.H.&rft.au=Phung%2C+D.Q.&rft.au=Venkatesh%2C+S.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=838&rft.epage=845+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.61&rft.externalDocID=1467354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon