Face Alignment at 3000 FPS via Regressing Local Binary Features
This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local bi...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1685 - 1692 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 2575-7075 |
DOI | 10.1109/CVPR.2014.218 |
Cover
Loading…
Abstract | This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. Our approach achieves the state-of-the-art results when tested on the current most challenging benchmarks. Furthermore, because extracting and regressing local binary features is computationally very cheap, our system is much faster than previous methods. It achieves over 3, 000 fps on a desktop or 300 fps on a mobile phone for locating a few dozens of landmarks. |
---|---|
AbstractList | This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. Our approach achieves the state-of-the-art results when tested on the current most challenging benchmarks. Furthermore, because extracting and regressing local binary features is computationally very cheap, our system is much faster than previous methods. It achieves over 3, 000 fps on a desktop or 300 fps on a mobile phone for locating a few dozens of landmarks. |
Author | Jian Sun Shaoqing Ren Yichen Wei Xudong Cao |
Author_xml | – sequence: 1 givenname: Shaoqing surname: Ren fullname: Ren, Shaoqing – sequence: 2 givenname: Xudong surname: Cao fullname: Cao, Xudong – sequence: 3 givenname: Yichen surname: Wei fullname: Wei, Yichen – sequence: 4 givenname: Jian surname: Sun fullname: Sun, Jian |
BookMark | eNpNkL1PwzAQxQ0qElA6MrF4ZEnxxbHjm1CpCCBVoiofa-TYl8pSmpQkReK_x1IZmO5J997pd--STdquJcauQcwBBN4tP9ebeSogm6dgTtgMcwNZjqgAjDplFyC0TDQCTv7pczYbhlCJVOc6U1JfsPvCOuKLJmzbHbUjtyOXQgherN_4d7B8Q9ueYqbd8lXnbMMfQmv7H16QHQ9xc8XOatsMNPubU_ZRPL4vn5PV69PLcrFKQirMmNQ-YokaIffSG2e8MzV4RHB1BpUTztsqRfKySiupSLtIC_EhVJVV5LScstvj3X3ffR1oGMtdGBw1jW2pOwwl6DzHWIBS0XpztAYiKvd92EXgUqNADZn8BVjXWUw |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.218 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Electronic Library IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 2575-7075 |
EndPage | 1692 |
ExternalDocumentID | 6909614 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-fd1180f917d3d8c8dc8f1d991cf41bc0cdab29ed3b2b35e6c691181495ba5ec63 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Jul 11 00:23:54 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-fd1180f917d3d8c8dc8f1d991cf41bc0cdab29ed3b2b35e6c691181495ba5ec63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677914755 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1677914755 ieee_primary_6909614 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.5002751 |
Snippet | This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1685 |
SubjectTerms | Alignment Benchmarks Computer vision Conferences Face Face Alignment Facial Feature extraction Landmarks Learning Linear regression Pattern recognition Random Forest Regression Shape Testing Training Vegetation |
Title | Face Alignment at 3000 FPS via Regressing Local Binary Features |
URI | https://ieeexplore.ieee.org/document/6909614 https://www.proquest.com/docview/1677914755 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtmJ9sYJHkybZR5KTaDGIWCnVSm8lu9mVoqRiEw_-emc3SQvqwVvYsCGZmcxj5_EhdO5pQqiW0uEiYg54xL4jAp87kqSm8ZIyZYe4jh747ZTezdishS7WvTBKKVt8plxzaXP52VKW5qhsAJFczA1q9RYEblWvViM7AQ85ZRV2t9XCBCIbHq8zCoFBY7GZT04cHvvxZt7mYPg8npgiL-oGBvvDoqz8Us3W3iQdNGretCozeXXLQrjy68cQx_9-yg7qbTr78Hhts3ZRS-V7qFO7orj-0Vew1KA9NGtddJmksPnqbfFiCwhwWmACFMDJ-BF_LlI8UTZ0h8fie2Mg8bVt9cXGySzhTg9Nk5un4a1Twy84i8CLCkdnZjychnguI1kko0xG2s_An5Sa-kJ6MktFEKuMiEAQ4KkEsoK_ABGXSJmSnOyjdr7M1QHCoI4FjWLqEaapJiIKtRljQ2KuPS5Dr4-6hkTz92rCxrymTh-dNUyYg9SbVEaaq2W5mvs8DGOfhowd_r31CG0bjlZFXceoXXyU6gTch0KcWrn5BrlAvWQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPOgJHxjxuSYeLbTdR9uTUSNBBUIQDLemu901RANGWg_-eme3LSbqwVuzzTbtzHQeO48PoXNXE0K1lA4XIXPAI_Yc4XvckSQxjZeUKTvEtT_g3Qm9n7LpGrpY9cIopWzxmWqZS5vLTxcyN0dlbYjkIm5Qq9fB7jOv6NaqpMfnAaesQO-2ephAbMOjVU7BN3gsNvfJicMjL_qeuNm-eRqOTJkXbfkG_cPirPxSztbidOqoX71rUWjy0soz0ZKfP8Y4_vdjtlDju7cPD1dWaxutqfkOqpfOKC5_9SUsVXgP1douuuwksPnqdfZsSwhwkmECFMCd4SP-mCV4pGzwDo_FPWMi8bVt9sXGzczhTgNNOrfjm65TAjA4M98NM0enZkCchoguJWkow1SG2kvBo5SaekK6Mk2EH6mUCF8Q4KoEsoLHADGXSJiSnOyh2nwxV_sIg0IWNIyoS5immogw0GaQDYm4drkM3CbaNSSK34oZG3FJnSY6q5gQg9ybZEYyV4t8GXs8CCKPBowd_L31FG10x_1e3LsbPByiTcPdosTrCNWy91wdgzORiRMrQ1_NjMCt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Face+Alignment+at+3000+FPS+via+Regressing+Local+Binary+Features&rft.au=Shaoqing+Ren&rft.au=Xudong+Cao&rft.au=Yichen+Wei&rft.au=Jian+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1685&rft.epage=1692&rft_id=info:doi/10.1109%2FCVPR.2014.218&rft.externalDocID=6909614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |