Face Alignment at 3000 FPS via Regressing Local Binary Features

This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local bi...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1685 - 1692
Main Authors Ren, Shaoqing, Cao, Xudong, Wei, Yichen, Sun, Jian
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
2575-7075
DOI10.1109/CVPR.2014.218

Cover

Loading…
Abstract This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. Our approach achieves the state-of-the-art results when tested on the current most challenging benchmarks. Furthermore, because extracting and regressing local binary features is computationally very cheap, our system is much faster than previous methods. It achieves over 3, 000 fps on a desktop or 300 fps on a mobile phone for locating a few dozens of landmarks.
AbstractList This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary features, and a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. Our approach achieves the state-of-the-art results when tested on the current most challenging benchmarks. Furthermore, because extracting and regressing local binary features is computationally very cheap, our system is much faster than previous methods. It achieves over 3, 000 fps on a desktop or 300 fps on a mobile phone for locating a few dozens of landmarks.
Author Jian Sun
Shaoqing Ren
Yichen Wei
Xudong Cao
Author_xml – sequence: 1
  givenname: Shaoqing
  surname: Ren
  fullname: Ren, Shaoqing
– sequence: 2
  givenname: Xudong
  surname: Cao
  fullname: Cao, Xudong
– sequence: 3
  givenname: Yichen
  surname: Wei
  fullname: Wei, Yichen
– sequence: 4
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
BookMark eNpNkL1PwzAQxQ0qElA6MrF4ZEnxxbHjm1CpCCBVoiofa-TYl8pSmpQkReK_x1IZmO5J997pd--STdquJcauQcwBBN4tP9ebeSogm6dgTtgMcwNZjqgAjDplFyC0TDQCTv7pczYbhlCJVOc6U1JfsPvCOuKLJmzbHbUjtyOXQgherN_4d7B8Q9ueYqbd8lXnbMMfQmv7H16QHQ9xc8XOatsMNPubU_ZRPL4vn5PV69PLcrFKQirMmNQ-YokaIffSG2e8MzV4RHB1BpUTztsqRfKySiupSLtIC_EhVJVV5LScstvj3X3ffR1oGMtdGBw1jW2pOwwl6DzHWIBS0XpztAYiKvd92EXgUqNADZn8BVjXWUw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.218
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 1692
ExternalDocumentID 6909614
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-fd1180f917d3d8c8dc8f1d991cf41bc0cdab29ed3b2b35e6c691181495ba5ec63
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Jul 11 00:23:54 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-fd1180f917d3d8c8dc8f1d991cf41bc0cdab29ed3b2b35e6c691181495ba5ec63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677914755
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677914755
ieee_primary_6909614
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5002751
Snippet This paper presents a highly efficient, very accurate regression approach for face alignment. Our approach has two novel components: a set of local binary...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1685
SubjectTerms Alignment
Benchmarks
Computer vision
Conferences
Face
Face Alignment
Facial
Feature extraction
Landmarks
Learning
Linear regression
Pattern recognition
Random Forest
Regression
Shape
Testing
Training
Vegetation
Title Face Alignment at 3000 FPS via Regressing Local Binary Features
URI https://ieeexplore.ieee.org/document/6909614
https://www.proquest.com/docview/1677914755
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtmJ9sYJHkybZR5KTaDGIWCnVSm8lu9mVoqRiEw_-emc3SQvqwVvYsCGZmcxj5_EhdO5pQqiW0uEiYg54xL4jAp87kqSm8ZIyZYe4jh747ZTezdishS7WvTBKKVt8plxzaXP52VKW5qhsAJFczA1q9RYEblWvViM7AQ85ZRV2t9XCBCIbHq8zCoFBY7GZT04cHvvxZt7mYPg8npgiL-oGBvvDoqz8Us3W3iQdNGretCozeXXLQrjy68cQx_9-yg7qbTr78Hhts3ZRS-V7qFO7orj-0Vew1KA9NGtddJmksPnqbfFiCwhwWmACFMDJ-BF_LlI8UTZ0h8fie2Mg8bVt9cXGySzhTg9Nk5un4a1Twy84i8CLCkdnZjychnguI1kko0xG2s_An5Sa-kJ6MktFEKuMiEAQ4KkEsoK_ABGXSJmSnOyjdr7M1QHCoI4FjWLqEaapJiIKtRljQ2KuPS5Dr4-6hkTz92rCxrymTh-dNUyYg9SbVEaaq2W5mvs8DGOfhowd_r31CG0bjlZFXceoXXyU6gTch0KcWrn5BrlAvWQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPOgJHxjxuSYeLbTdR9uTUSNBBUIQDLemu901RANGWg_-eme3LSbqwVuzzTbtzHQeO48PoXNXE0K1lA4XIXPAI_Yc4XvckSQxjZeUKTvEtT_g3Qm9n7LpGrpY9cIopWzxmWqZS5vLTxcyN0dlbYjkIm5Qq9fB7jOv6NaqpMfnAaesQO-2ephAbMOjVU7BN3gsNvfJicMjL_qeuNm-eRqOTJkXbfkG_cPirPxSztbidOqoX71rUWjy0soz0ZKfP8Y4_vdjtlDju7cPD1dWaxutqfkOqpfOKC5_9SUsVXgP1douuuwksPnqdfZsSwhwkmECFMCd4SP-mCV4pGzwDo_FPWMi8bVt9sXGzczhTgNNOrfjm65TAjA4M98NM0enZkCchoguJWkow1SG2kvBo5SaekK6Mk2EH6mUCF8Q4KoEsoLHADGXSJiSnOyh2nwxV_sIg0IWNIyoS5immogw0GaQDYm4drkM3CbaNSSK34oZG3FJnSY6q5gQg9ybZEYyV4t8GXs8CCKPBowd_L31FG10x_1e3LsbPByiTcPdosTrCNWy91wdgzORiRMrQ1_NjMCt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Face+Alignment+at+3000+FPS+via+Regressing+Local+Binary+Features&rft.au=Shaoqing+Ren&rft.au=Xudong+Cao&rft.au=Yichen+Wei&rft.au=Jian+Sun&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1685&rft.epage=1692&rft_id=info:doi/10.1109%2FCVPR.2014.218&rft.externalDocID=6909614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon