Seven Ways to Improve Example-Based Single Image Super Resolution

In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanc...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1865 - 1873
Main Authors Timofte, Radu, Rothe, Rasmus, Van Gool, Luc
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements. The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new stateof-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.
AbstractList In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements. The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new stateof-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.
Author Rothe, Rasmus
Van Gool, Luc
Timofte, Radu
Author_xml – sequence: 1
  givenname: Radu
  surname: Timofte
  fullname: Timofte, Radu
  email: radu.timofte@vision.ee.ethz.ch
  organization: CVL, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Rasmus
  surname: Rothe
  fullname: Rothe, Rasmus
  email: rrothe@vision.ee.ethz.ch
  organization: CVL, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Luc
  surname: Van Gool
  fullname: Van Gool, Luc
  email: vangool@vision.ee.ethz.ch
  organization: ETH Zurich, KU Leuven, Zurich, Switzerland
BookMark eNotjMtKw0AUQEdRsNYsXbmZH0i9N8m8ljW0WigojY9luUnulEheJG2xf29BN-csDpxbcdV2LQtxjzBDBPeYfr5tZhGgPkNfiMAZi4k2sbUK8VJMEHQcaofuRgTj-A0A6LRF6yZinvGRW_lFp1HuO7lq-qE7slz8UNPXHD7RyKXMqnZX8znSjmV26HmQGx67-rCvuvZOXHuqRw7-PRUfy8V7-hKuX59X6XwdVhHYfeiRCvQONTrnbWR8DjE78oV3lHvIgRhKBEiKItGUlIlCXypHqjSRp9LGU_Hw962YedsPVUPDaWuMBWVU_AvCaUv-
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.206
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 1873
ExternalDocumentID 7780575
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i208t-f1ac1f916199f827fb03e9afcf9abf0b0ae0d1004cc46a4d451fd59a5d72fad83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-f1ac1f916199f827fb03e9afcf9abf0b0ae0d1004cc46a4d451fd59a5d72fad83
PageCount 9
ParticipantIDs ieee_primary_7780575
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.528394
Snippet In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2)...
SourceID ieee
SourceType Publisher
StartPage 1865
SubjectTerms Dictionaries
Encoding
Image reconstruction
Image resolution
Testing
Training
Title Seven Ways to Improve Example-Based Single Image Super Resolution
URI https://ieeexplore.ieee.org/document/7780575
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx4tbNvtY68SCDHBEBXlRvYxmxgNEGkT9dc725YSjQdv7baZbHbbndc33xByZYGb0NepJx3ClVsQnmCg0ZAzKbeCpbzoGTm5i8czfjuP5g1yXdfCAEABPoOeuyxy-Walcxcq6yeOgD-JmqSJjltZq7WLp4gYdY-o70P0bGJRZxQC141lx7HZHzxN7x2wy6EU4h-dVQrFMmqTyXZKJZ7ktZdnqqe_frE1_nfO-6S7K-Gj01o5HZAGLA9Ju7I5afVHb3Bo29ZhO9bBk9axOtFn-bmh2YqWYQegww_pmIS9G9R7KAGlvgE-xPOIPuRrFOAyAeV33CWz0fBxMPaqTgveS8DSzLO-1L5FS9EXwqZBYhULQUirrZDKMsUkMOO45bTmseSGR741kZCRSQIrTRoekdZytYRjQv0UVBTG3HKFviPg20JwmQbagFLMhiek4xZpsS7JNBbV-pz-PXxG9twmldisc9LK3nO4QCsgU5fF9n8DNTGv7Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwELVKOcCJpUXs-ADHlCxOGh-4sKkFWlVQoLfiZSwhUItoIijfwq_wb4yTLgJxrcQtmUQjxeN4ZjzPbwjZN8B04KnYERbhygxwh7ugMJDTMTPcjVnWM7LRjGq37KITdgrkc3IWBgAy8BlU7GVWy9d9ldqtssOqJeCvjiGUlzB8wwRtcFQ_RWse-P75Wfuk5ox6CDiPvhsnjvGE8gzGQB7nJvarRroBcGGU4UIaV7oCXG1Z05RikWCahZ7RIRehrvpG6DhAvXNkHuOM0M9Ph013cHiE3o5P7gPMpSI-qWH4tv_LlNXz8OSudW2hZBYXEf3o5ZK5svMl8jUehBzB8lRJE1lRH7_4If_rKC2T8vSQIm1N3O8KKUBvlSyNomo6WrMGKBo3rhjLSuhLLG8VvRfDAU36NN9YAXr2LixXsnOMnh01oNZnwIe44tKb9AUV2FpH_qeWye1MvnCNFHv9HqwT6sUgwyBihknMjgHf5pyJ2FcapHRNsEFK1ijdl5wupDuyx-bf4j2yUGs3rrpX9eblFlm0EyRHom2TYvKawg7GPInczaYeJQ-ztuI3FccQbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Seven+Ways+to+Improve+Example-Based+Single+Image+Super+Resolution&rft.au=Timofte%2C+Radu&rft.au=Rothe%2C+Rasmus&rft.au=Van+Gool%2C+Luc&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1865&rft.epage=1873&rft_id=info:doi/10.1109%2FCVPR.2016.206&rft.externalDocID=7780575