NEPTUNE: Real Time Stream Processing for Internet of Things and Sensing Environments
Improvements in miniaturization and networking capabilities of sensors have contributed to the proliferation of Internet of Things (IoT) and continuous sensing environments. Data streams generated in such settings must keep pace with generation rates and be processed in real time. Challenges in acco...
Saved in:
Published in | 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) pp. 1143 - 1152 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improvements in miniaturization and networking capabilities of sensors have contributed to the proliferation of Internet of Things (IoT) and continuous sensing environments. Data streams generated in such settings must keep pace with generation rates and be processed in real time. Challenges in accomplishing this include: high data arrival rates, buffer overflows, context-switches, and object creation overheads. We propose a holistic framework that addresses the CPU, memory, network, and kernel issues involved in stream processing. Our prototype, Neptune, builds on our Granules cloud runtime. The framework maximizes bandwidth utilization in the presence of small messages via the use of buffering and dynamic compactions of packets based on payload entropy. Our use of thread-pools and batched processing reduces context switches and improves effective CPU utilizations. NEPTUNE alleviates memory pressure that can lead to swapping, page faults, and thrashing through efficient reuse of objects. To cope with buffer overflows we rely on flow control and throttling the preceding stages of a processing pipeline. Our benchmarks demonstrate the suitability of the Neptune and we contrast our performance with Apache Storm, the dominant stream-processing framework developed by Twitter. At a single node, we are able to achieve a processing rate of ~2 million stream packets per-second. In a distributed setup, we achieved a rate of ~100 million packets per-second. |
---|---|
AbstractList | Improvements in miniaturization and networking capabilities of sensors have contributed to the proliferation of Internet of Things (IoT) and continuous sensing environments. Data streams generated in such settings must keep pace with generation rates and be processed in real time. Challenges in accomplishing this include: high data arrival rates, buffer overflows, context-switches, and object creation overheads. We propose a holistic framework that addresses the CPU, memory, network, and kernel issues involved in stream processing. Our prototype, Neptune, builds on our Granules cloud runtime. The framework maximizes bandwidth utilization in the presence of small messages via the use of buffering and dynamic compactions of packets based on payload entropy. Our use of thread-pools and batched processing reduces context switches and improves effective CPU utilizations. NEPTUNE alleviates memory pressure that can lead to swapping, page faults, and thrashing through efficient reuse of objects. To cope with buffer overflows we rely on flow control and throttling the preceding stages of a processing pipeline. Our benchmarks demonstrate the suitability of the Neptune and we contrast our performance with Apache Storm, the dominant stream-processing framework developed by Twitter. At a single node, we are able to achieve a processing rate of ~2 million stream packets per-second. In a distributed setup, we achieved a rate of ~100 million packets per-second. |
Author | Buddhika, Thilina Pallickara, Shrideep |
Author_xml | – sequence: 1 givenname: Thilina surname: Buddhika fullname: Buddhika, Thilina email: thilinab@cs.colostate.edu organization: Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA – sequence: 2 givenname: Shrideep surname: Pallickara fullname: Pallickara, Shrideep email: shrideep@cs.colostate.edu organization: Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA |
BookMark | eNotjFFLwzAUhSNMcJt79MmX_IHWe5M2bXyT2elgzOK655G2N1pZU0mK4L-3qOfl8B0-zoLN3OCIsRuEGBH03bZ8LA-xAFRxIi_YSmc5pqBBYAJqxuaYSogEZOkVW4TwASBAJnrOqn1RVsd9cc9fyZx51fXED6Mn0_PSDw2F0Lk3bgfPt24k72jkg-XV-7QGblzLD-R-lcJ9dX5wPbkxXLNLa86BVv-9ZMdNUa2fo93L03b9sIs6AfkYkTJWNXXbtLW0aKnWUyZAXbe1zhsJGVhlc025SgSCyqVqDSkltBYtZHLJbv9-OyI6ffquN_77lKWoEFH-AGTmUV4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IPDPS.2016.43 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781509021406 150902140X |
EndPage | 1152 |
ExternalDocumentID | 7516111 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI JC5 OCL RIE RIL |
ID | FETCH-LOGICAL-i208t-e6af6cbdcdb3f1feb9999cdb19bdb98c3070f6f89e8642106836dae662992d073 |
IEDL.DBID | RIE |
ISSN | 1530-2075 |
IngestDate | Wed Jun 26 19:23:47 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-e6af6cbdcdb3f1feb9999cdb19bdb98c3070f6f89e8642106836dae662992d073 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7516111 |
PublicationCentury | 2000 |
PublicationDate | 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 20160501 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) |
PublicationTitleAbbrev | IPDPS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020349 |
Score | 1.7676395 |
Snippet | Improvements in miniaturization and networking capabilities of sensors have contributed to the proliferation of Internet of Things (IoT) and continuous sensing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1143 |
SubjectTerms | Bandwidth Distributed stream processing High-throughput data processing Internet of things Message systems Program processors Real-time systems Sensors Throughput |
Title | NEPTUNE: Real Time Stream Processing for Internet of Things and Sensing Environments |
URI | https://ieeexplore.ieee.org/document/7516111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXg0aZp0N4lXjVShJdgWeiv7mICIqUh68dc7k00fiAdv2bAhYYfsfDP7fTOM3cYqMgJDLk-BwAAFIauXDrXyYlvY1EoAYSnfMZ7I0Xz4shCLFrvbamEAoCafgU-X9Vm-XZk1pcr6sUB8QkLegyQInVZrG1xRnRVXGzVAy8diV0-z_5w_5lNicUmfxDl7XVRqJ_LUYePN6x135N1fV9o3378qM_73-45YbyfX4_nWER2zFpQnrLPp18Cb37fLZpMsn80n2T1_RXjISf3B6VRaffBGL4CPc0Sx3OUJoeKrgrvOnlyVlk-J7Y5Tsj11XI_Nn7LZw8hruip4b2GQVB5IVUijrbE6KgYFaISIKQ4GqbY6TQxtAoUskhQSEsEGMomkVSAlOq7Q4o5wytrlqoQzxiGSEAZGI8ZQQwlG2diISOEA1ACUOmddWqTlpyucsWzW5-Lv25fskGzk2IRXrF19reEaPX6lb2pT_wAimauZ |
link.rule.ids | 310,311,786,790,795,796,802,27956,55107 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0QPOgJFYzf7sGjLYXSbetVS0ChaaQk3Mh-TBNjLMaUi7_e2baAMR68dZs22exkd97MznsDcOsLV3kUclkCPQpQCLJa4UAKy9eZDjVH9LTJd0xjPpoPnhbeogF3Wy4MIpbFZ2ibx_IuX6_U2qTKur5H-MQQeffIzzt-xdbahldGaaVSR3XI9r63U9TsjpPHZGbquLht6Dk_-qiUbmTYgulmAlX1yJu9LqStvn5pM_53hofQ2RH2WLJ1RUfQwPwYWpuODazewG1I4yhJ53F0z14IIDLD_2DmXlq8s5oxQL8zwrGsyhRiwVYZq3p7MpFrNjP17vRJ9IMf14H5MEofRlbdV8F67TtBYSEXGVdSKy3drJehJJAY0qAXSi3DQJljIONZEGJgaLAOD1yuBXJOrquv6Uw4gWa-yvEUGLoc-46ShDLEgKMS2leeK2iAoodCnEHbLNLyo5LOWNbrc_736xvYH6XTyXIyjp8v4MDYq6otvIRm8bnGK_L_hbwuzf4NXC2u7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Parallel+and+Distributed+Processing+Symposium+%28IPDPS%29&rft.atitle=NEPTUNE%3A+Real+Time+Stream+Processing+for+Internet+of+Things+and+Sensing+Environments&rft.au=Buddhika%2C+Thilina&rft.au=Pallickara%2C+Shrideep&rft.date=2016-05-01&rft.pub=IEEE&rft.issn=1530-2075&rft.spage=1143&rft.epage=1152&rft_id=info:doi/10.1109%2FIPDPS.2016.43&rft.externalDocID=7516111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-2075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-2075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-2075&client=summon |