Performance improvement for face recognition using PCA and two-dimensional PCA

Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very...

Full description

Saved in:
Bibliographic Details
Published in2013 International Conference on Computer Communication and Informatics pp. 1 - 5
Main Authors Dandpat, S. K., Meher, S.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2013
Subjects
Online AccessGet full text
ISBN1467329061
9781467329064
DOI10.1109/ICCCI.2013.6466291

Cover

Abstract Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very difficult. In this paper a high performance face recognition algorithm is developed and tested using conventional Principal Component Analysis (PCA) and two dimensional Principal Component Analysis (2DPCA). These statistical transforms are exploited for feature extraction and data reduction. We have proposed here to assign different weight to the only very few nonzero eigenvalues related eigenvectors which are considered as non-trivial principal components for classification. Lastly face recognition task is performed by k-nearest distance measurement. Experimental results on ORL and YALE face databases show that the proposed method improves the performance of face recognition with respect to existing techniques. The results show that better recognition performance can be achieved with less computational cost than that of other existing methods.
AbstractList Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very difficult. In this paper a high performance face recognition algorithm is developed and tested using conventional Principal Component Analysis (PCA) and two dimensional Principal Component Analysis (2DPCA). These statistical transforms are exploited for feature extraction and data reduction. We have proposed here to assign different weight to the only very few nonzero eigenvalues related eigenvectors which are considered as non-trivial principal components for classification. Lastly face recognition task is performed by k-nearest distance measurement. Experimental results on ORL and YALE face databases show that the proposed method improves the performance of face recognition with respect to existing techniques. The results show that better recognition performance can be achieved with less computational cost than that of other existing methods.
Author Meher, S.
Dandpat, S. K.
Author_xml – sequence: 1
  givenname: S. K.
  surname: Dandpat
  fullname: Dandpat, S. K.
  email: sk.dandpat@gmail.com
  organization: Electron. & Instrum. Eng, Seemanta Eng. Coll., Mayurbhanj, India
– sequence: 2
  givenname: S.
  surname: Meher
  fullname: Meher, S.
  email: sukadevmeher@gmail.com
  organization: Electron. & Commun. Eng, Nat. Inst. of Technol., Rourkela, India
BookMark eNo1kE9PwzAMxYMACTb2BeDSI5cO50_T9DhVDCZNsAOcqyx1pqA2GU0H4tsTtHGy_Px71rMn5MIHj4TcUphTCtXDqq7r1ZwB5XMppGQVPSOzqlRUyJKzCkp6Tib_jaRXZBbjBwAks2QMrsnLBgcbhl57g5nr90P4wh79mCUxszqJA5qw8250wWeH6Pwu29SLTPs2G79D3rpExzTT3Z9-Qy6t7iLOTnVK3pePb_Vzvn59WtWLde4YqDHHouVaWGmpNYVBzYFqti1BqZaZglsNEkqkamspN2W7lUaUQrUFKqErSOYpuT_uTYE_DxjHpnfRYNdpj-EQG6oAhEhHs4TeHVGHiM1-cL0efprTt_gv-gtfTw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCCI.2013.6466291
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467329071
1467329053
9781467329057
146732907X
EndPage 5
ExternalDocumentID 6466291
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-e5d3a4f6f1fc5cea301a2b7088d2c53fa0607e18bf13c7db6c4748d5e84a905d3
IEDL.DBID RIE
ISBN 1467329061
9781467329064
IngestDate Fri Jul 11 08:19:01 EDT 2025
Wed Aug 27 04:54:27 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-e5d3a4f6f1fc5cea301a2b7088d2c53fa0607e18bf13c7db6c4748d5e84a905d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1800443292
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1800443292
ieee_primary_6466291
PublicationCentury 2000
PublicationDate 2013-Jan.
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationTitle 2013 International Conference on Computer Communication and Informatics
PublicationTitleAbbrev ICCCI
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106220
Score 1.5807303
Snippet Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Automation
Covariance matrix
Eigenface
Eigenvalues
Face
Face recognition
Feature extraction
Image representation
Performance enhancement
Principal component analysis
Principal component analysis (PCA)
Tasks
Two dimensional
Two-dimensional PCA
Vectors
Title Performance improvement for face recognition using PCA and two-dimensional PCA
URI https://ieeexplore.ieee.org/document/6466291
https://www.proquest.com/docview/1800443292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6qJ08qrVhfrODRpJvNZrM5SrC0QksPFnoL-5QiJKIJgr_e3U3SgnrwlkyYkJ1MZjOPbwaAO5VFQrKYBtb5cJCcNAqYNDxQ9oKOkRRYOTTyYklna_K0STYDcL_DwmitffGZDt2hz-WrSjYuVDahhFLsoOoHVs1arNY-nmJ9G4yRx27RNHZdzKO-pVN3TnrQDMom8zzP566yKw67u3bjVX7ZZL_RTI_Bon_Etr7kNWxqEcqvH90b_7uGEzDaQ_rgardZnYKBLodgudrDBuDWhxd8tBBaIjTcEnf1RVUJXYn8C1zlD5CXCtafVaDcaIC2rYejj8B6-vicz4JuwEKwxYjVgU5UzImhJjIykZrbj51jkVrDo7BMYsMRRamOmDBRLFMlqCQpYSrRjPAMWeYzcFhWpT4HMJaGsISm1svNCLI8ytpNqx6KCsQyrsZg6GRRvLU9NIpODGNw20u7sHrtkhW81FXzUUTM5Zrte8MXf7NegiPsR1O4cMgVOKzfG31tfxBqceM14xsFG7d0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6KHvSk0or1uYJH0242m83mKMHSalt6aKG3sE8pQiKaIPjr3c2jBfXgLdkwITuZzGQe3wwAdyr2hWQB9azz4SA5ke8xabin7AUdICmwcmjk2ZyOV-RpHa474H6LhdFaV8VneuAOq1y-ymXpQmVDSijFDqq-b-0-CWu01i6iYr0bjFGF3qJR4PqY-21Tp-actLAZFA8nSZJMXG1XMGju2wxY-aWVK1MzOgKz9iHrCpPXQVmIgfz60b_xv7s4Br0dqA8utubqBHR01gXzxQ44ADdVgKGKF0K7CA23i9sKozyDrkj-BS6SB8gzBYvP3FNuOEDd2MOt98Bq9LhMxl4zYsHbYMQKT4cq4MRQ4xsZSs3t586xiKzqUViGgeGIokj7TBg_kJESVJKIMBVqRniMLPEp2MvyTJ8BGEhDWEgj6-fGBFkaZTWnFRBFBWIxV33QdbxI3-ouGmnDhj64bbmdWsl26Qqe6bz8SH3mss32veHzv0lvwMF4OZum08n8-QIc4mpQhQuOXIK94r3UV_Z3oRDXlZR8A9FhusE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+International+Conference+on+Computer+Communication+and+Informatics&rft.atitle=Performance+improvement+for+face+recognition+using+PCA+and+two-dimensional+PCA&rft.au=Dandpat%2C+S.+K.&rft.au=Meher%2C+S.&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467329064&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCCI.2013.6466291&rft.externalDocID=6466291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/sc.gif&client=summon&freeimage=true