Performance improvement for face recognition using PCA and two-dimensional PCA
Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very...
Saved in:
Published in | 2013 International Conference on Computer Communication and Informatics pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.01.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 1467329061 9781467329064 |
DOI | 10.1109/ICCCI.2013.6466291 |
Cover
Abstract | Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very difficult. In this paper a high performance face recognition algorithm is developed and tested using conventional Principal Component Analysis (PCA) and two dimensional Principal Component Analysis (2DPCA). These statistical transforms are exploited for feature extraction and data reduction. We have proposed here to assign different weight to the only very few nonzero eigenvalues related eigenvectors which are considered as non-trivial principal components for classification. Lastly face recognition task is performed by k-nearest distance measurement. Experimental results on ORL and YALE face databases show that the proposed method improves the performance of face recognition with respect to existing techniques. The results show that better recognition performance can be achieved with less computational cost than that of other existing methods. |
---|---|
AbstractList | Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are complex visual stimuli that differ dramatically, hence developing an efficient computational approach for accurate face recognition is very difficult. In this paper a high performance face recognition algorithm is developed and tested using conventional Principal Component Analysis (PCA) and two dimensional Principal Component Analysis (2DPCA). These statistical transforms are exploited for feature extraction and data reduction. We have proposed here to assign different weight to the only very few nonzero eigenvalues related eigenvectors which are considered as non-trivial principal components for classification. Lastly face recognition task is performed by k-nearest distance measurement. Experimental results on ORL and YALE face databases show that the proposed method improves the performance of face recognition with respect to existing techniques. The results show that better recognition performance can be achieved with less computational cost than that of other existing methods. |
Author | Meher, S. Dandpat, S. K. |
Author_xml | – sequence: 1 givenname: S. K. surname: Dandpat fullname: Dandpat, S. K. email: sk.dandpat@gmail.com organization: Electron. & Instrum. Eng, Seemanta Eng. Coll., Mayurbhanj, India – sequence: 2 givenname: S. surname: Meher fullname: Meher, S. email: sukadevmeher@gmail.com organization: Electron. & Commun. Eng, Nat. Inst. of Technol., Rourkela, India |
BookMark | eNo1kE9PwzAMxYMACTb2BeDSI5cO50_T9DhVDCZNsAOcqyx1pqA2GU0H4tsTtHGy_Px71rMn5MIHj4TcUphTCtXDqq7r1ZwB5XMppGQVPSOzqlRUyJKzCkp6Tib_jaRXZBbjBwAks2QMrsnLBgcbhl57g5nr90P4wh79mCUxszqJA5qw8250wWeH6Pwu29SLTPs2G79D3rpExzTT3Z9-Qy6t7iLOTnVK3pePb_Vzvn59WtWLde4YqDHHouVaWGmpNYVBzYFqti1BqZaZglsNEkqkamspN2W7lUaUQrUFKqErSOYpuT_uTYE_DxjHpnfRYNdpj-EQG6oAhEhHs4TeHVGHiM1-cL0efprTt_gv-gtfTw |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/ICCCI.2013.6466291 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781467329071 1467329053 9781467329057 146732907X |
EndPage | 5 |
ExternalDocumentID | 6466291 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-e5d3a4f6f1fc5cea301a2b7088d2c53fa0607e18bf13c7db6c4748d5e84a905d3 |
IEDL.DBID | RIE |
ISBN | 1467329061 9781467329064 |
IngestDate | Fri Jul 11 08:19:01 EDT 2025 Wed Aug 27 04:54:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-e5d3a4f6f1fc5cea301a2b7088d2c53fa0607e18bf13c7db6c4748d5e84a905d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1800443292 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1800443292 ieee_primary_6466291 |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan. 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
PublicationDecade | 2010 |
PublicationTitle | 2013 International Conference on Computer Communication and Informatics |
PublicationTitleAbbrev | ICCCI |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106220 |
Score | 1.5807303 |
Snippet | Now a days research is going on to design a high performance automatic face recognition system which is really a challenging task for researchers. As faces are... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Automation Covariance matrix Eigenface Eigenvalues Face Face recognition Feature extraction Image representation Performance enhancement Principal component analysis Principal component analysis (PCA) Tasks Two dimensional Two-dimensional PCA Vectors |
Title | Performance improvement for face recognition using PCA and two-dimensional PCA |
URI | https://ieeexplore.ieee.org/document/6466291 https://www.proquest.com/docview/1800443292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6qJ08qrVhfrODRpJvNZrM5SrC0QksPFnoL-5QiJKIJgr_e3U3SgnrwlkyYkJ1MZjOPbwaAO5VFQrKYBtb5cJCcNAqYNDxQ9oKOkRRYOTTyYklna_K0STYDcL_DwmitffGZDt2hz-WrSjYuVDahhFLsoOoHVs1arNY-nmJ9G4yRx27RNHZdzKO-pVN3TnrQDMom8zzP566yKw67u3bjVX7ZZL_RTI_Bon_Etr7kNWxqEcqvH90b_7uGEzDaQ_rgardZnYKBLodgudrDBuDWhxd8tBBaIjTcEnf1RVUJXYn8C1zlD5CXCtafVaDcaIC2rYejj8B6-vicz4JuwEKwxYjVgU5UzImhJjIykZrbj51jkVrDo7BMYsMRRamOmDBRLFMlqCQpYSrRjPAMWeYzcFhWpT4HMJaGsISm1svNCLI8ytpNqx6KCsQyrsZg6GRRvLU9NIpODGNw20u7sHrtkhW81FXzUUTM5Zrte8MXf7NegiPsR1O4cMgVOKzfG31tfxBqceM14xsFG7d0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6KHvSk0or1uYJH0242m83mKMHSalt6aKG3sE8pQiKaIPjr3c2jBfXgLdkwITuZzGQe3wwAdyr2hWQB9azz4SA5ke8xabin7AUdICmwcmjk2ZyOV-RpHa474H6LhdFaV8VneuAOq1y-ymXpQmVDSijFDqq-b-0-CWu01i6iYr0bjFGF3qJR4PqY-21Tp-actLAZFA8nSZJMXG1XMGju2wxY-aWVK1MzOgKz9iHrCpPXQVmIgfz60b_xv7s4Br0dqA8utubqBHR01gXzxQ44ADdVgKGKF0K7CA23i9sKozyDrkj-BS6SB8gzBYvP3FNuOEDd2MOt98Bq9LhMxl4zYsHbYMQKT4cq4MRQ4xsZSs3t586xiKzqUViGgeGIokj7TBg_kJESVJKIMBVqRniMLPEp2MvyTJ8BGEhDWEgj6-fGBFkaZTWnFRBFBWIxV33QdbxI3-ouGmnDhj64bbmdWsl26Qqe6bz8SH3mss32veHzv0lvwMF4OZum08n8-QIc4mpQhQuOXIK94r3UV_Z3oRDXlZR8A9FhusE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+International+Conference+on+Computer+Communication+and+Informatics&rft.atitle=Performance+improvement+for+face+recognition+using+PCA+and+two-dimensional+PCA&rft.au=Dandpat%2C+S.+K.&rft.au=Meher%2C+S.&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467329064&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCCI.2013.6466291&rft.externalDocID=6466291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/sc.gif&client=summon&freeimage=true |