Leveraging Implicit Relative Labeling-Importance Information for Effective Multi-label Learning
In multi-label learning, each training example is represented by a single instance while associated with multiple labels, and the task is to predict a set of relevant labels for the unseen instance. Existing approaches learn from multi-label data by assuming equal labeling-importance, i.e. all the a...
Saved in:
Published in | Proceedings (IEEE International Conference on Data Mining) pp. 251 - 260 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4786 |
DOI | 10.1109/ICDM.2015.41 |
Cover
Loading…
Abstract | In multi-label learning, each training example is represented by a single instance while associated with multiple labels, and the task is to predict a set of relevant labels for the unseen instance. Existing approaches learn from multi-label data by assuming equal labeling-importance, i.e. all the associated labels are regarded to be relevant while their relative importance for the training example are not differentiated. Nonetheless, this assumption fails to reflect the fact that the importance degree of each associated label is generally different, though the importance information is not explicitly accessible from the training examples. In this paper, we show that effective multi-label learning can be achieved by leveraging the implicit relative labeling-importance (RLI) information. Specifically, RLI degrees are formalized as multinomial distribution over the label space, which are estimated by adapting an iterative label propagation procedure. After that, the multi-label prediction model is learned by fitting the estimated multinomial distribution as regularized with popular multi-label empirical loss. Comprehensive experiments clearly validate the usefulness of leveraging implicit RLI information to learn from multi-label data. |
---|---|
AbstractList | In multi-label learning, each training example is represented by a single instance while associated with multiple labels, and the task is to predict a set of relevant labels for the unseen instance. Existing approaches learn from multi-label data by assuming equal labeling-importance, i.e. all the associated labels are regarded to be relevant while their relative importance for the training example are not differentiated. Nonetheless, this assumption fails to reflect the fact that the importance degree of each associated label is generally different, though the importance information is not explicitly accessible from the training examples. In this paper, we show that effective multi-label learning can be achieved by leveraging the implicit relative labeling-importance (RLI) information. Specifically, RLI degrees are formalized as multinomial distribution over the label space, which are estimated by adapting an iterative label propagation procedure. After that, the multi-label prediction model is learned by fitting the estimated multinomial distribution as regularized with popular multi-label empirical loss. Comprehensive experiments clearly validate the usefulness of leveraging implicit RLI information to learn from multi-label data. |
Author | Yu-Kun Li Xin Geng Min-Ling Zhang |
Author_xml | – sequence: 1 givenname: Yu-Kun surname: Li fullname: Li, Yu-Kun – sequence: 2 givenname: Min-Ling surname: Zhang fullname: Zhang, Min-Ling – sequence: 3 givenname: Xin surname: Geng fullname: Geng, Xin |
BookMark | eNotj0tLAzEUhSNUsNbu3LnJ0s3UZPJeSq06MEUQXQ_JzJ0SyGTqPAr-e6N1dQ9837lwrtEi9hEQuqVkQykxD8X2ab_JCRUbTi_Q2ihNuVTMCML0Ai2pECTjSssrtB5H70guleSGqCWqSjjBYA8-HnDRHYOv_YTfIdjJnwCX1kFIKEuoHyYba8BFbPuhS7yPOCW8a1uo_-z9HCafhd8OLsEOMTVv0GVrwwjr_7tCn8-7j-1rVr69FNvHMvM50VPWyJqBa0TuDJWC2wYaZ2tHhLZMK20NN5LJtIpa1zpHeZNGOA1gQIFtOFuh-_Pf49B_zTBOVefHGkKwEfp5rKgyLBcm5zKpd2fVA0B1HHxnh-9KMcVYbtgPX4Fllg |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/ICDM.2015.41 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781467395038 146739503X 9781467395045 1467395048 |
EndPage | 260 |
ExternalDocumentID | 7373329 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-d6c3ebd52b91654adedbacb058a3878a9496368141abfbb14db02b8ee9e7ead43 |
IEDL.DBID | RIE |
ISSN | 1550-4786 |
IngestDate | Fri Jul 11 04:10:39 EDT 2025 Wed Aug 27 02:34:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-d6c3ebd52b91654adedbacb058a3878a9496368141abfbb14db02b8ee9e7ead43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1793259246 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7373329 proquest_miscellaneous_1793259246 |
PublicationCentury | 2000 |
PublicationDate | 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 20151101 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (IEEE International Conference on Data Mining) |
PublicationTitleAbbrev | ICDM |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764907 ssj0036630 |
Score | 2.1072285 |
Snippet | In multi-label learning, each training example is represented by a single instance while associated with multiple labels, and the task is to predict a set of... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 251 |
SubjectTerms | Accessibility Conferences Data mining Estimation label distribution Labels Learning Mathematical models multi-label learning Predictive models relative labeling-importance Reliability Semantics Symmetric matrices Tasks Training Yttrium |
Title | Leveraging Implicit Relative Labeling-Importance Information for Effective Multi-label Learning |
URI | https://ieeexplore.ieee.org/document/7373329 https://www.proquest.com/docview/1793259246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLaK8ZCRGnKbxI_ZcqFrUIgYqdYvs5IoqoEWQMPDrsZ0HEjCwebAjy3e-R_x9dwhdcqNt3MkzEqaGEyZkSqQCIEJDxiPGaeSLPc_vxGTBbpd82UJXDRcGADz4DAI39G_52TYt3K-yQUxjSiO1g3Zs4lZytWrdiUQsmAqbZItaT-rJkDYCJyyWogG9q8F0dD13oC4euD7wvqnKL0vs3cu4g-b1xkpUyVNQ5CZIP3_UbPzvzvdQ75vIh-8bF7WPWrA5QJ26kwOuLnYXJTOwKu0bFuGpx5ivc1zi5D4Az7TxrHUyffHRuvtqRWNyYsV2hMsqyG62p_SSZ7cGV9VbH3toMb55GE1I1XqBrKNQ5iQTKQVjpWWUozvpDDKjUxNyqamMpVbMXlwhh2yozcqYIcusCIwEUBBb3WT0ELU32w0cIcxCBiu2ktROZRykEUowCY7wa01rqvuo684reS2rayTVUfXRRS2RxGq8e8bQG9gW74kzKTZpi5g4_nvpCdp10i0Zg6eonb8VcGZDh9yce535AjA4w4E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDi0SLeGIkRlzR-xJmBqoEWMbQSW2QnV1QBLYKEgV-P7SRFAgY2D-fI8p3vzvH33QGcCaNt3ilyGmRGUC5VRlWMSKXGXIRcsNAXex7eyf6Y3zyIhyU4X3BhENGDz7Djhv4tP59npftVdhGxiLEwXoZV4ci4FVursZ5QRpLHweK6xWws9XRIK0l5pOQC9h5fJJdXQwfrEh3XCd63Vfnli32A6W3AsFlahSt56pSF6WSfP6o2_nftm9D-pvKR-0WQ2oIlnG3DRtPLgdRHuwXpAK1R-5ZFJPEo82lBKqTcB5KBNp63TpMXn6-7r9ZEJqdYYkekqoPspD2plz67OaSu3_rYhnHvenTZp3XzBToNA1XQXGYMjdWXiR3hSeeYG52ZQCjNVKR0zO3RlarLu9pMjOny3KrAKMQYI2udnO3Aymw-w10gPOA44RPFrCgXqIyMJVfoKL_WuWZ6D1puv9LXqr5GWm_VHpw2GkmtzbuHDD3DefmeOqdir20hl_t_Tz2Btf5oOEgHyd3tAaw7TVf8wUNYKd5KPLKJRGGOvf18AYsTxsk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Data+Mining%29&rft.atitle=Leveraging+Implicit+Relative+Labeling-Importance+Information+for+Effective+Multi-label+Learning&rft.au=Yu-Kun+Li&rft.au=Min-Ling+Zhang&rft.au=Xin+Geng&rft.date=2015-11-01&rft.pub=IEEE&rft.issn=1550-4786&rft.spage=251&rft.epage=260&rft_id=info:doi/10.1109%2FICDM.2015.41&rft.externalDocID=7373329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4786&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4786&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4786&client=summon |