Facial Expression Recognition via a Boosted Deep Belief Network
A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1805 - 1812 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and classifier to achieve good recognition performance. This paper presents a novel Boosted Deep Belief Network (BDBN) for performing the three training stages iteratively in a unified loopy framework. Through the proposed BDBN framework, a set of features, which is effective to characterize expression-related facial appearance/shape changes, can be learned and selected to form a boosted strong classifier in a statistical way. As learning continues, the strong classifier is improved iteratively and more importantly, the discriminative capabilities of selected features are strengthened as well according to their relative importance to the strong classifier via a joint fine-tune process in the BDBN framework. Extensive experiments on two public databases showed that the BDBN framework yielded dramatic improvements in facial expression analysis. |
---|---|
AbstractList | A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and classifier to achieve good recognition performance. This paper presents a novel Boosted Deep Belief Network (BDBN) for performing the three training stages iteratively in a unified loopy framework. Through the proposed BDBN framework, a set of features, which is effective to characterize expression-related facial appearance/shape changes, can be learned and selected to form a boosted strong classifier in a statistical way. As learning continues, the strong classifier is improved iteratively and more importantly, the discriminative capabilities of selected features are strengthened as well according to their relative importance to the strong classifier via a joint fine-tune process in the BDBN framework. Extensive experiments on two public databases showed that the BDBN framework yielded dramatic improvements in facial expression analysis. |
Author | Shizhong Han Yan Tong Zibo Meng Ping Liu |
Author_xml | – sequence: 1 givenname: Ping surname: Liu fullname: Liu, Ping – sequence: 2 givenname: Shizhong surname: Han fullname: Han, Shizhong – sequence: 3 givenname: Zibo surname: Meng fullname: Meng, Zibo – sequence: 4 givenname: Yan surname: Tong fullname: Tong, Yan |
BookMark | eNpNjD1PwzAURQ0qEqV0ZGLJyJJix44_JkRLC0gVoApYoxfnGVmkcYjTAv-eojIw3SPdo3NCBk1okJAzRieMUXM5e31aTTLKxCTj_ICMjdJMKGNyxnR-SIaMSp5Kw8zgHx-TcYy-pJlUUuRcDsnVAqyHOpl_tR3uvtAkK7ThrfH9L289JJBMQ4g9VskNYptMsfbokgfsP0P3fkqOHNQRx387Ii-L-fPsLl0-3t7Prpepz6juU6iUA8isA22RlraqtJVKUCc1RQ6a8lwzS0tJORdOCVcpsGC5BOCitIqPyMW-23bhY4OxL9Y-WqxraDBsYsGkUoZxtQuMyPle9YhYtJ1fQ_ddSEONzAz_AeFdWzg |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.233 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 2575-7075 |
EndPage | 1812 |
ExternalDocumentID | 6909629 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-ad7faa2cfa8ce0bcdd8c6740f680e3a803581c0b60334f74fd7acac36aa34bc73 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Fri Jul 11 00:25:15 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-ad7faa2cfa8ce0bcdd8c6740f680e3a803581c0b60334f74fd7acac36aa34bc73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677913760 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909629 proquest_miscellaneous_1677913760 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.487996 |
Snippet | A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1805 |
SubjectTerms | Belief networks Classifiers Computer vision Face recognition Facial Feature extraction Feature recognition Joints Learning Nickel Pattern recognition Training Visualization |
Title | Facial Expression Recognition via a Boosted Deep Belief Network |
URI | https://ieeexplore.ieee.org/document/6909629 https://www.proquest.com/docview/1677913760 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zTz5N3cT5RQQfbdc2WZI-CZsbQ9gYw8neSr4KQ-iGa0X8603SdgP1wbcQaGhz18td7nf3A-BeMKZTipmXStz3sCDEi1GIPIEwMqZBxcL17pzOyGSJn1f9VQM87GthtNYOfKZ9O3S5fLWRhb0q65lILiZRfASOTOBW1mrVuhMRSnC_5O52VhiZyIbE-4xCZNlYXOaTII_EYXzot9kbvs4XFuSF_cjy5zqWlV-m2Z034xaY1m9awkze_CIXvvz60cTxv59yAjqHyj44359Zp6ChszPQqlxRWP3oOzNVsz3Uc23wOOb2eh2OPivsbAYXNfrIjD_WHHI42LiiEfik9RYOtFk1hbMSad4By_HoZTjxKvoFbx0FLPe4oinnkUw5kzoQUikmCcVBSligEWeBbZ0mA0EChLCRd6ool1wiwjnCQlJ0DprZJtMXABoniGmskG3Wj1OOhBIKEWMOpIqMNZZd0LZblGzLDhtJtTtdcFcLITFab1MZPNObYpeEhNI4tICey78fvQLHVqIlqOsaNPP3Qt8Y9yEXt05vvgFMhMCE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mfNAnP6Y4PyP4aLe2ydL0SVA3pm5DxMneSr4KQ2jFbSL-9SZpu4H64FsINLS5690l97v7AVwIxnQaEealknQ8Iij1YhxgT2CCjWlQsXC9O4cj2h-T-0lnUoPLZS2M1tqBz3TLDl0uX-VyYa_K2uYkF9MwXoN14_c7QVGtVWlPSCNKOgV7t7PD2JxtaLzMKYSWj8XlPin2aBzEq46b7ZuXxycL8yKt0DLoOp6VX8bZeZzeFgyrdy2AJq-txVy05NePNo7__Zht2FvV9qHHpdfagZrOdmGrDEZR-avPzFTF91DNNeCqx-0FO-p-lujZDD1V-CMz_phyxNF17spG0K3Wb-ham1VTNCqw5nsw7nWfb_peScDgTUOfzT2uopTzUKacSe0LqRSTNCJ-SpmvMWe-bZ4mfUF9jImReKoiLrnElHNMhIzwPtSzPNMHgEwYxDRR2LbrJynHQgmFqTEIUoXGHssmNOwWJW9Fj42k3J0mnFdCSIze22QGz3S-mCUBjaI4sJCew78fPYON_vNwkAzuRg9HsGmlW0C8jqE-f1_oExNMzMWp06FvhzDDzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Facial+Expression+Recognition+via+a+Boosted+Deep+Belief+Network&rft.au=Ping+Liu&rft.au=Shizhong+Han&rft.au=Zibo+Meng&rft.au=Yan+Tong&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1805&rft.epage=1812&rft_id=info:doi/10.1109%2FCVPR.2014.233&rft.externalDocID=6909629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |