Facial Expression Recognition via a Boosted Deep Belief Network

A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1805 - 1812
Main Authors Liu, Ping, Han, Shizhong, Meng, Zibo, Tong, Yan
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and classifier to achieve good recognition performance. This paper presents a novel Boosted Deep Belief Network (BDBN) for performing the three training stages iteratively in a unified loopy framework. Through the proposed BDBN framework, a set of features, which is effective to characterize expression-related facial appearance/shape changes, can be learned and selected to form a boosted strong classifier in a statistical way. As learning continues, the strong classifier is improved iteratively and more importantly, the discriminative capabilities of selected features are strengthened as well according to their relative importance to the strong classifier via a joint fine-tune process in the BDBN framework. Extensive experiments on two public databases showed that the BDBN framework yielded dramatic improvements in facial expression analysis.
AbstractList A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and classifier construction. Extensive empirical studies are needed to search for an optimal combination of feature representation, feature set, and classifier to achieve good recognition performance. This paper presents a novel Boosted Deep Belief Network (BDBN) for performing the three training stages iteratively in a unified loopy framework. Through the proposed BDBN framework, a set of features, which is effective to characterize expression-related facial appearance/shape changes, can be learned and selected to form a boosted strong classifier in a statistical way. As learning continues, the strong classifier is improved iteratively and more importantly, the discriminative capabilities of selected features are strengthened as well according to their relative importance to the strong classifier via a joint fine-tune process in the BDBN framework. Extensive experiments on two public databases showed that the BDBN framework yielded dramatic improvements in facial expression analysis.
Author Shizhong Han
Yan Tong
Zibo Meng
Ping Liu
Author_xml – sequence: 1
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
– sequence: 2
  givenname: Shizhong
  surname: Han
  fullname: Han, Shizhong
– sequence: 3
  givenname: Zibo
  surname: Meng
  fullname: Meng, Zibo
– sequence: 4
  givenname: Yan
  surname: Tong
  fullname: Tong, Yan
BookMark eNpNjD1PwzAURQ0qEqV0ZGLJyJJix44_JkRLC0gVoApYoxfnGVmkcYjTAv-eojIw3SPdo3NCBk1okJAzRieMUXM5e31aTTLKxCTj_ICMjdJMKGNyxnR-SIaMSp5Kw8zgHx-TcYy-pJlUUuRcDsnVAqyHOpl_tR3uvtAkK7ThrfH9L289JJBMQ4g9VskNYptMsfbokgfsP0P3fkqOHNQRx387Ii-L-fPsLl0-3t7Prpepz6juU6iUA8isA22RlraqtJVKUCc1RQ6a8lwzS0tJORdOCVcpsGC5BOCitIqPyMW-23bhY4OxL9Y-WqxraDBsYsGkUoZxtQuMyPle9YhYtJ1fQ_ddSEONzAz_AeFdWzg
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.233
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 1812
ExternalDocumentID 6909629
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-ad7faa2cfa8ce0bcdd8c6740f680e3a803581c0b60334f74fd7acac36aa34bc73
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Jul 11 00:25:15 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-ad7faa2cfa8ce0bcdd8c6740f680e3a803581c0b60334f74fd7acac36aa34bc73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677913760
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909629
proquest_miscellaneous_1677913760
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.487996
Snippet A training process for facial expression recognition is usually performed sequentially in three individual stages: feature learning, feature selection, and...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1805
SubjectTerms Belief networks
Classifiers
Computer vision
Face recognition
Facial
Feature extraction
Feature recognition
Joints
Learning
Nickel
Pattern recognition
Training
Visualization
Title Facial Expression Recognition via a Boosted Deep Belief Network
URI https://ieeexplore.ieee.org/document/6909629
https://www.proquest.com/docview/1677913760
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zTz5N3cT5RQQfbdc2WZI-CZsbQ9gYw8neSr4KQ-iGa0X8603SdgP1wbcQaGhz18td7nf3A-BeMKZTipmXStz3sCDEi1GIPIEwMqZBxcL17pzOyGSJn1f9VQM87GthtNYOfKZ9O3S5fLWRhb0q65lILiZRfASOTOBW1mrVuhMRSnC_5O52VhiZyIbE-4xCZNlYXOaTII_EYXzot9kbvs4XFuSF_cjy5zqWlV-m2Z034xaY1m9awkze_CIXvvz60cTxv59yAjqHyj44359Zp6ChszPQqlxRWP3oOzNVsz3Uc23wOOb2eh2OPivsbAYXNfrIjD_WHHI42LiiEfik9RYOtFk1hbMSad4By_HoZTjxKvoFbx0FLPe4oinnkUw5kzoQUikmCcVBSligEWeBbZ0mA0EChLCRd6ool1wiwjnCQlJ0DprZJtMXABoniGmskG3Wj1OOhBIKEWMOpIqMNZZd0LZblGzLDhtJtTtdcFcLITFab1MZPNObYpeEhNI4tICey78fvQLHVqIlqOsaNPP3Qt8Y9yEXt05vvgFMhMCE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mfNAnP6Y4PyP4aLe2ydL0SVA3pm5DxMneSr4KQ2jFbSL-9SZpu4H64FsINLS5690l97v7AVwIxnQaEealknQ8Iij1YhxgT2CCjWlQsXC9O4cj2h-T-0lnUoPLZS2M1tqBz3TLDl0uX-VyYa_K2uYkF9MwXoN14_c7QVGtVWlPSCNKOgV7t7PD2JxtaLzMKYSWj8XlPin2aBzEq46b7ZuXxycL8yKt0DLoOp6VX8bZeZzeFgyrdy2AJq-txVy05NePNo7__Zht2FvV9qHHpdfagZrOdmGrDEZR-avPzFTF91DNNeCqx-0FO-p-lujZDD1V-CMz_phyxNF17spG0K3Wb-ham1VTNCqw5nsw7nWfb_peScDgTUOfzT2uopTzUKacSe0LqRSTNCJ-SpmvMWe-bZ4mfUF9jImReKoiLrnElHNMhIzwPtSzPNMHgEwYxDRR2LbrJynHQgmFqTEIUoXGHssmNOwWJW9Fj42k3J0mnFdCSIze22QGz3S-mCUBjaI4sJCew78fPYON_vNwkAzuRg9HsGmlW0C8jqE-f1_oExNMzMWp06FvhzDDzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Facial+Expression+Recognition+via+a+Boosted+Deep+Belief+Network&rft.au=Ping+Liu&rft.au=Shizhong+Han&rft.au=Zibo+Meng&rft.au=Yan+Tong&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1805&rft.epage=1812&rft_id=info:doi/10.1109%2FCVPR.2014.233&rft.externalDocID=6909629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon