Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision

Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is ke...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 3198 - 3205
Main Authors Liang-Chieh Chen, Fidler, Sanja, Yuille, Alan L., Urtasun, Raquel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is key to reduce this cost. In this paper, we show how to exploit 3D information to automatically generate very accurate object segmentations given annotated 3D bounding boxes. We formulate the problem as the one of inference in a binary Markov random field which exploits appearance models, stereo and/or noisy point clouds, a repository of 3D CAD models as well as topological constraints. We demonstrate the effectiveness of our approach in the context of autonomous driving, and show that we can segment cars with the accuracy of 86% intersection-over-union, performing as well as highly recommended MTurkers!
AbstractList Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is key to reduce this cost. In this paper, we show how to exploit 3D information to automatically generate very accurate object segmentations given annotated 3D bounding boxes. We formulate the problem as the one of inference in a binary Markov random field which exploits appearance models, stereo and/or noisy point clouds, a repository of 3D CAD models as well as topological constraints. We demonstrate the effectiveness of our approach in the context of autonomous driving, and show that we can segment cars with the accuracy of 86% intersection-over-union, performing as well as highly recommended MTurkers!
Author Yuille, Alan L.
Urtasun, Raquel
Liang-Chieh Chen
Fidler, Sanja
Author_xml – sequence: 1
  surname: Liang-Chieh Chen
  fullname: Liang-Chieh Chen
  email: lcchen@cs.ucla.edu
– sequence: 2
  givenname: Sanja
  surname: Fidler
  fullname: Fidler, Sanja
  email: fidler@cs.toronto.edu
– sequence: 3
  givenname: Alan L.
  surname: Yuille
  fullname: Yuille, Alan L.
  email: yuille@stat.ucla.edu
– sequence: 4
  givenname: Raquel
  surname: Urtasun
  fullname: Urtasun, Raquel
  email: urtasun@cs.toronto.edu
BookMark eNotzLtOwzAUAFAjFYlSMjKx-AdSrt82W0kLVAoCQQRj5STXxWqTVHkg8fcMMJ3tXJJZ27VIyDWDJWPgbrOP17clByaXEtwZSZyxTBrnFGNWzcicgRapdsxdkGQYYglcGy2V0HOyvkc_0vEL6XMx9Qfshzu6msau8WOs6Lbxe6S5L_EY2z0NfdfQT_QHKtb0fTph_x2H2LVX5Dz444DJvwtSPGyK7CnNXx632SpPIwc7pr6sQpA1ryVXEiVyq2zFAngOlXQs1MHwYIyBMgQwXAtmIWCpgrS-9kIsyM1fGxFxd-pj4_ufnXbgLCjxC0RzTAY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2014.409
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EndPage 3205
ExternalDocumentID 6909805
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
G8K
IPLJI
JC5
M43
RIE
RIG
RIO
RNS
ID FETCH-LOGICAL-i208t-abcff4d2d4254e4e2858c1f0a20c491fdf72f7770bff07263180feb5f48ada33
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Jun 26 19:23:54 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-abcff4d2d4254e4e2858c1f0a20c491fdf72f7770bff07263180feb5f48ada33
PageCount 8
ParticipantIDs ieee_primary_6909805
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
Score 2.2913115
Snippet Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens...
SourceID ieee
SourceType Publisher
StartPage 3198
SubjectTerms 3D vision
Computational modeling
crowd-sourcing
Design automation
Image segmentation
Laser radar
Object segmentation
Solid modeling
Three-dimensional displays
Training
Title Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision
URI https://ieeexplore.ieee.org/document/6909805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgGCVzJ09TN-PvcPBoOwoUqDfdXNQ4s-jU3RagkJjFbZntxb9e6I_NGA9emuY7NATK4wPe-x4A50ZTniodBw770sBbXAWS88g9VExTwgTjXjs8fGS3L_R-Ek8a4GKthTHGFOQzE_rX4i4_XejcH5V13U4uEb5g6ZZAuNRq1f8OZpzR2Ht3V5st775S3HQyErAkSjb1Nbu919GTJ3XRkHoe4g9XlWJRGbTAsG5OySWZhXmmQv31q1Ljf9u7Azob-R4crRemXdAw8z3QqvJNWM3mTxeqLR3qWBv0rx02Q5cUwuE4X81cbngJr_JsURR2hXcfDn3gg1SFiB16aQp8M3IGSR8-50sPO_7wrQPGg5tx7zaojBaCd4xEFkilraUpTt0EpoYaLGKhI4skRpomkU0tx5ZzjpS1iGPmcABZo2JLhUwlIfugOV_MzQGAiGkZMaNFFGvqMgEpibCaMGLdJwlHh6Dtu2m6LEtpTKseOvo7fAy2_TCVzKwT0MxWuTl1OUCmzorB_waCTq2s
link.rule.ids 310,311,786,790,795,796,802,27947,55098
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSECsZve_DoxrZ2bedNQQPKCFFUbqTrR2KIQHC7-Ott9wHGePCyLO9habr27dP2ed4HgEslMJWJCB2T-6RjLa4cTqlvHkmIJSKMUKsdjoek94IfJuGkBq7WWhilVE4-U659ze_y5UJk9qisbXZyEbMFS7cMro5YodaqRk9AKMGhde8ut1vWfyW_6yTIIZEfbSpstjuvoydL68IutkzEH74q-bJy3wBx1aCCTTJzszRxxdevWo3_bfEuaG0EfHC0Xpr2QE3N90GjRJywnM-fJlSZOlSxJujemuwMDSyE8ThbzQw6vIY3WbrIS7vC_ofJP3DAk1zGDq04Bb4pPoOoC5-zpU089vitBcb3d-NOzymtFpz3wGOpwxOhNZaBNFMYK6wCFjLha48HnsCRr6WmgaaUeonWHg2IyQSeVkmoMeOSI3QA6vPFXB0C6BHBfaIE80OBDRbgHDEtEEHafBJR7wg0bTdNl0UxjWnZQ8d_hy_Adm8cD6aD_vDxBOzYX1bwtE5BPV1l6swggjQ5zwfCN-4jsQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Beat+the+MTurkers%3A+Automatic+Image+Labeling+from+Weak+3D+Supervision&rft.au=Liang-Chieh+Chen&rft.au=Fidler%2C+Sanja&rft.au=Yuille%2C+Alan+L.&rft.au=Urtasun%2C+Raquel&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.spage=3198&rft.epage=3205&rft_id=info:doi/10.1109%2FCVPR.2014.409&rft.externalDocID=6909805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon