Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision
Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is ke...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 3198 - 3205 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is key to reduce this cost. In this paper, we show how to exploit 3D information to automatically generate very accurate object segmentations given annotated 3D bounding boxes. We formulate the problem as the one of inference in a binary Markov random field which exploits appearance models, stereo and/or noisy point clouds, a repository of 3D CAD models as well as topological constraints. We demonstrate the effectiveness of our approach in the context of autonomous driving, and show that we can segment cars with the accuracy of 86% intersection-over-union, performing as well as highly recommended MTurkers! |
---|---|
AbstractList | Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens or hundreds of thousands of dollars. Thus, developing solutions that can automatically perform the labeling given only weak supervision is key to reduce this cost. In this paper, we show how to exploit 3D information to automatically generate very accurate object segmentations given annotated 3D bounding boxes. We formulate the problem as the one of inference in a binary Markov random field which exploits appearance models, stereo and/or noisy point clouds, a repository of 3D CAD models as well as topological constraints. We demonstrate the effectiveness of our approach in the context of autonomous driving, and show that we can segment cars with the accuracy of 86% intersection-over-union, performing as well as highly recommended MTurkers! |
Author | Yuille, Alan L. Urtasun, Raquel Liang-Chieh Chen Fidler, Sanja |
Author_xml | – sequence: 1 surname: Liang-Chieh Chen fullname: Liang-Chieh Chen email: lcchen@cs.ucla.edu – sequence: 2 givenname: Sanja surname: Fidler fullname: Fidler, Sanja email: fidler@cs.toronto.edu – sequence: 3 givenname: Alan L. surname: Yuille fullname: Yuille, Alan L. email: yuille@stat.ucla.edu – sequence: 4 givenname: Raquel surname: Urtasun fullname: Urtasun, Raquel email: urtasun@cs.toronto.edu |
BookMark | eNotzLtOwzAUAFAjFYlSMjKx-AdSrt82W0kLVAoCQQRj5STXxWqTVHkg8fcMMJ3tXJJZ27VIyDWDJWPgbrOP17clByaXEtwZSZyxTBrnFGNWzcicgRapdsxdkGQYYglcGy2V0HOyvkc_0vEL6XMx9Qfshzu6msau8WOs6Lbxe6S5L_EY2z0NfdfQT_QHKtb0fTph_x2H2LVX5Dz444DJvwtSPGyK7CnNXx632SpPIwc7pr6sQpA1ryVXEiVyq2zFAngOlXQs1MHwYIyBMgQwXAtmIWCpgrS-9kIsyM1fGxFxd-pj4_ufnXbgLCjxC0RzTAY |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2014.409 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EndPage | 3205 |
ExternalDocumentID | 6909805 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK G8K IPLJI JC5 M43 RIE RIG RIO RNS |
ID | FETCH-LOGICAL-i208t-abcff4d2d4254e4e2858c1f0a20c491fdf72f7770bff07263180feb5f48ada33 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Jun 26 19:23:54 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-abcff4d2d4254e4e2858c1f0a20c491fdf72f7770bff07263180feb5f48ada33 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909805 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 |
Score | 2.2913115 |
Snippet | Labeling large-scale datasets with very accurate object segmentations is an elaborate task that requires a high degree of quality control and a budget of tens... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3198 |
SubjectTerms | 3D vision Computational modeling crowd-sourcing Design automation Image segmentation Laser radar Object segmentation Solid modeling Three-dimensional displays Training |
Title | Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision |
URI | https://ieeexplore.ieee.org/document/6909805 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgGCVzJ09TN-PvcPBoOwoUqDfdXNQ4s-jU3RagkJjFbZntxb9e6I_NGA9emuY7NATK4wPe-x4A50ZTniodBw770sBbXAWS88g9VExTwgTjXjs8fGS3L_R-Ek8a4GKthTHGFOQzE_rX4i4_XejcH5V13U4uEb5g6ZZAuNRq1f8OZpzR2Ht3V5st775S3HQyErAkSjb1Nbu919GTJ3XRkHoe4g9XlWJRGbTAsG5OySWZhXmmQv31q1Ljf9u7Azob-R4crRemXdAw8z3QqvJNWM3mTxeqLR3qWBv0rx02Q5cUwuE4X81cbngJr_JsURR2hXcfDn3gg1SFiB16aQp8M3IGSR8-50sPO_7wrQPGg5tx7zaojBaCd4xEFkilraUpTt0EpoYaLGKhI4skRpomkU0tx5ZzjpS1iGPmcABZo2JLhUwlIfugOV_MzQGAiGkZMaNFFGvqMgEpibCaMGLdJwlHh6Dtu2m6LEtpTKseOvo7fAy2_TCVzKwT0MxWuTl1OUCmzorB_waCTq2s |
link.rule.ids | 310,311,786,790,795,796,802,27947,55098 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSECsZve_DoxrZ2bedNQQPKCFFUbqTrR2KIQHC7-Ott9wHGePCyLO9habr27dP2ed4HgEslMJWJCB2T-6RjLa4cTqlvHkmIJSKMUKsdjoek94IfJuGkBq7WWhilVE4-U659ze_y5UJk9qisbXZyEbMFS7cMro5YodaqRk9AKMGhde8ut1vWfyW_6yTIIZEfbSpstjuvoydL68IutkzEH74q-bJy3wBx1aCCTTJzszRxxdevWo3_bfEuaG0EfHC0Xpr2QE3N90GjRJywnM-fJlSZOlSxJujemuwMDSyE8ThbzQw6vIY3WbrIS7vC_ofJP3DAk1zGDq04Bb4pPoOoC5-zpU089vitBcb3d-NOzymtFpz3wGOpwxOhNZaBNFMYK6wCFjLha48HnsCRr6WmgaaUeonWHg2IyQSeVkmoMeOSI3QA6vPFXB0C6BHBfaIE80OBDRbgHDEtEEHafBJR7wg0bTdNl0UxjWnZQ8d_hy_Adm8cD6aD_vDxBOzYX1bwtE5BPV1l6swggjQ5zwfCN-4jsQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Beat+the+MTurkers%3A+Automatic+Image+Labeling+from+Weak+3D+Supervision&rft.au=Liang-Chieh+Chen&rft.au=Fidler%2C+Sanja&rft.au=Yuille%2C+Alan+L.&rft.au=Urtasun%2C+Raquel&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.spage=3198&rft.epage=3205&rft_id=info:doi/10.1109%2FCVPR.2014.409&rft.externalDocID=6909805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |