A data-driven approach to chord similarity and chord mutability

Assessing the relationship between chord sequences is an important ongoing research topic in the fields of music cognition and music information retrieval. Heuristic and cognitive models of chord similarity have been investigated but none has aimed to capture the collective perception of chord simil...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Second International Conference on Multimedia Big Data (BigMM) pp. 275 - 278
Main Authors Bountouridis, Dimitrios, Koops, Hedrik Vincent, Wiering, Frans, Veltkamp, Remco C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assessing the relationship between chord sequences is an important ongoing research topic in the fields of music cognition and music information retrieval. Heuristic and cognitive models of chord similarity have been investigated but none has aimed to capture the collective perception of chord similarity from a large dataset of user-generated content. Devising a largescale experiment to gather sufficient data from human subjects has always been a major stumbling block. We present a novel chord similarity model based on a large amount of crowd-sourced transcriptions from a popular automatic chord estimation service. We show that our model outperforms heuristic-based models in a song identification task. Secondly, a model of chord mutations based on a large amount of crowd-sourced cover songs transcriptions is introduced. From crowd-sourced data, we create substitution matrices that capture the perceived similarity and mutability between chords. These results show that modelling the collective perception can not only substitute alternative, sophisticated models but also further enhance performance in various music information retrieval tasks.
AbstractList Assessing the relationship between chord sequences is an important ongoing research topic in the fields of music cognition and music information retrieval. Heuristic and cognitive models of chord similarity have been investigated but none has aimed to capture the collective perception of chord similarity from a large dataset of user-generated content. Devising a largescale experiment to gather sufficient data from human subjects has always been a major stumbling block. We present a novel chord similarity model based on a large amount of crowd-sourced transcriptions from a popular automatic chord estimation service. We show that our model outperforms heuristic-based models in a song identification task. Secondly, a model of chord mutations based on a large amount of crowd-sourced cover songs transcriptions is introduced. From crowd-sourced data, we create substitution matrices that capture the perceived similarity and mutability between chords. These results show that modelling the collective perception can not only substitute alternative, sophisticated models but also further enhance performance in various music information retrieval tasks.
Author Veltkamp, Remco C.
Wiering, Frans
Bountouridis, Dimitrios
Koops, Hedrik Vincent
Author_xml – sequence: 1
  givenname: Dimitrios
  surname: Bountouridis
  fullname: Bountouridis, Dimitrios
  organization: Dept. of Inf. & Comput. Sci., Utrecht Univ., Utrecht, Netherlands
– sequence: 2
  givenname: Hedrik Vincent
  surname: Koops
  fullname: Koops, Hedrik Vincent
  organization: Dept. of Inf. & Comput. Sci., Utrecht Univ., Utrecht, Netherlands
– sequence: 3
  givenname: Frans
  surname: Wiering
  fullname: Wiering, Frans
  organization: Dept. of Inf. & Comput. Sci., Utrecht Univ., Utrecht, Netherlands
– sequence: 4
  givenname: Remco C.
  surname: Veltkamp
  fullname: Veltkamp, Remco C.
  organization: Dept. of Inf. & Comput. Sci., Utrecht Univ., Utrecht, Netherlands
BookMark eNotzM1KAzEUQOEIurDVpSs3eYEZbzLJJFlJLVqFFjfdl5vkjg3MH2kU-vYKdnXgW5wFux6nkRh7EFALAe7pJX3tdrUE0dbCXrGF0OBACuP0LXte8YgFq5jTD40c5zlPGI68TDwcpxz5KQ2px5zKmeMYLzh8F_Sp_8M7dtNhf6L7S5ds__a6X79X28_Nx3q1rZIEWyq0oVFCKQERAcmT7jA4E2JLYH3jW2dcF0wb0FttZIdeWkIlonVOkmqW7PF_m4joMOc0YD4fjFYaGtP8Akr5RY4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigMM.2016.18
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509021795
9781509021796
EndPage 278
ExternalDocumentID 7545037
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i208t-a8c3414410da0aebe5fac97cd6e08b3b6979fc76cab8572fab28ea41d8992e43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:35:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-a8c3414410da0aebe5fac97cd6e08b3b6979fc76cab8572fab28ea41d8992e43
PageCount 4
ParticipantIDs ieee_primary_7545037
PublicationCentury 2000
PublicationDate 20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 20160401
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE Second International Conference on Multimedia Big Data (BigMM)
PublicationTitleAbbrev BigMM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6021483
Snippet Assessing the relationship between chord sequences is an important ongoing research topic in the fields of music cognition and music information retrieval....
SourceID ieee
SourceType Publisher
StartPage 275
SubjectTerms Computational modeling
Context
Context modeling
Mathematical model
Matrices
Music information retrieval
User-generated content
Title A data-driven approach to chord similarity and chord mutability
URI https://ieeexplore.ieee.org/document/7545037
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDDi1E2d2JkQIKoKKYihSN0q-3xBEWqKSjLAr8dO0hYhBjbLi2NbuncXv_eOkCtAKTWAYjw2monIx0FpQ2ZGmR0pVAKlFzinT_H0RTzOo3mHXG-1MIhYk88w8MP6Ld-uoPK_yobSwT0fyy7pusKt0WrtbDOHd_lrmnqyVhz4Fh4_mqXUWDHZJ-lmlYYi8hZUpQng65cB438_44AMdqo8-rzFm0PSwaJPbm6pJ3kyu_Zhi24swmm5oi6wrS39yJe5q15dsk11YdvJZVU2_tyfAzKbPMzup6xtisDykKuSaQUOeFwSw63m2l1BlGlIJNgYuTJjEycyyUDGoI2KZJhpEyrUYmRdYRWiGB-RXrEq8JhQrHWmPNJZAiJRLmgDFxirEFwaEUk4IX2_98V7Y3uxaLd9-vf0GdnzR9-QWs5Jr1xXeOHwujSX9UV9A-_ymUg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRpG6a2M6EAIEKNBVDkbpV_rigCDVFJRng12Mn_UCIgc3yYlsn3Tvb770DuNDIudRaeJQp6YWRy4PcBJ7qpqYrUITIncA5GbL-S_g4jsYNuFxpYRCxIp-h74bVX76Z6dI9lXW4hXva4xuwaQdRUKu11saZnZvsNUkcXYv5ronHj3YpFVrc70CyXKcmibz5ZaF8_fXLgvG_G9mF9lqXR55XiLMHDcxbcHVNHM3TM3OXuMjSJJwUM2JT29yQj2ya2furLbeJzM1icloWtUP3ZxtG93ej2763aIvgZQEVhSeFttBjyxhqJJU2CFEqdcy1YUiF6ikW8zjVnGmpRMSDVKpAoAy7xl6tAgx7-9DMZzkeAMFKaUojmcY6jIVN25qGyESgbSERcX0ILXf2yXttfDFZHPvo7-lz2OqPksFk8DB8OoZtF4aa4nICzWJe4qlF70KdVUH7BiF8nJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Second+International+Conference+on+Multimedia+Big+Data+%28BigMM%29&rft.atitle=A+data-driven+approach+to+chord+similarity+and+chord+mutability&rft.au=Bountouridis%2C+Dimitrios&rft.au=Koops%2C+Hedrik+Vincent&rft.au=Wiering%2C+Frans&rft.au=Veltkamp%2C+Remco+C.&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=275&rft.epage=278&rft_id=info:doi/10.1109%2FBigMM.2016.18&rft.externalDocID=7545037