Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving

Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo ove...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1566 - 1573
Main Authors Shiyu Song, Chandraker, Manmohan
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2014.203

Cover

Loading…
Abstract Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo over long driving sequences. Our ground plane estimation uses multiple cues like sparse features, dense inter-frame stereo and (when applicable) object detection. A data-driven mechanism is proposed to learn models from training data that relate observation covariances for each cue to error behavior of its underlying variables. During testing, this allows per-frame adaptation of observation covariances based on relative confidences inferred from visual data. Our framework significantly boosts not only the accuracy of monocular self-localization, but also that of applications like object localization that rely on the ground plane. Experiments on the KITTI dataset demonstrate the accuracy of our ground plane estimation, monocular SFM and object localization relative to ground truth, with detailed comparisons to prior art.
AbstractList Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo over long driving sequences. Our ground plane estimation uses multiple cues like sparse features, dense inter-frame stereo and (when applicable) object detection. A data-driven mechanism is proposed to learn models from training data that relate observation covariances for each cue to error behavior of its underlying variables. During testing, this allows per-frame adaptation of observation covariances based on relative confidences inferred from visual data. Our framework significantly boosts not only the accuracy of monocular self-localization, but also that of applications like object localization that rely on the ground plane. Experiments on the KITTI dataset demonstrate the accuracy of our ground plane estimation, monocular SFM and object localization relative to ground truth, with detailed comparisons to prior art.
Author Shiyu Song
Chandraker, Manmohan
Author_xml – sequence: 1
  surname: Shiyu Song
  fullname: Shiyu Song
  organization: Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Manmohan
  surname: Chandraker
  fullname: Chandraker, Manmohan
  organization: NEC Labs. America, Cupertino, CA, USA
BookMark eNpNTztPwzAYNKhIlNKRicUjS4odP2KPVWmhUitQW1gjx_2MLCVxiRMk_j2WysBydzqdTnc3aNSGFhC6o2RGKdGPi4-33SwnlCdgF2iqC0V5obWgVIlLNKZEskxqqkf_9DWaxugrkstCcsHkGK13oRpij_fW1ICXsfeN6X1osW_xDkydHXwDeBvaYIfadHi_2mIXOjwf-uQ1YYj4qfPfvv28RVfO1BGmfzxB76vlYfGSbV6f14v5JvM5UX2mcwK8Uk45rqjhHAQ4kMDTJ0eMPVKhLeNVoiMrlHBEWqk1k8YaWjlVsAl6OPeeuvA1QOzLxkcLdW1aSHNKKotCE0EoSdH7c9QDQHnq0rfup5SaaJEqfwFrhl2t
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 1573
ExternalDocumentID 6909599
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-920e4b8f8f481a44e5efe6e4109f0acd159c34b159d3785f06c69936aca1bf873
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Tue Aug 05 11:34:40 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-920e4b8f8f481a44e5efe6e4109f0acd159c34b159d3785f06c69936aca1bf873
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677905010
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909599
proquest_miscellaneous_1677905010
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.2715423
Snippet Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1566
SubjectTerms Accuracy
Autonomous
Autonomous driving
Cameras
Computer vision
Drift
Estimation
Ground plane
Localization
Object localization
Pattern recognition
Position (location)
Real time
Roads
Structure from motion
Three-dimensional displays
Training
Visualization
Title Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving
URI https://ieeexplore.ieee.org/document/6909599
https://www.proquest.com/docview/1677905010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMOJXauLRwli7rj0ahKAJhqAYbsta2oSYbAa2i3-9r_uARD142tJkS_de997vfSN0pxQ3oLUFMVZ6hGmPEUDVijAJyji0loliisLshU-X7HkVrBrofl8LY4wpks9M390Wsfx1qnPnKhuAJScDKZuoCYZbWatVnx2fh5wF5ezuQgpTsGy43EcUfDeNpYh8ckq4HMpDv83B6H2-cElezsVCqykrv0RzoW8mbTSrd1qmmXz080z19dePJo7__ZRj1D1U9uH5XmedoIZJTlG7gqK4-tF3sFRPe6jXOuhpkap8l8EC6BQ8BtFQVj3iTYIXADeJqybBICPSIrUVv05mGBAxfsgzVziR5jv8uN04_0UXLSfjt9GUVIMYyMb3REak7xmmhBXAumHMmAmMNdwwIJ71Yr0GSKQpU3BZ01AE1uOaA-7hsY6HyoqQnqFWkibmHGFjqfAE8zXVMfOsBAAi4UVcAUt4aGkPdRyxos-y10ZU0amHbmt2RHD-XVAjTgzsPBpy1zExALPy4u9HL9GR422Z3nWFWtk2N9cAJDJ1U5ygb_BOwmY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH64HPTkjrsRPJqxbdI0OYo6jMuIjAveSpNJYBBacdqLv96XLiOoB08tgZT0veS9L28FONFaWNTaklqnAspNwCmiak25QmWcOMdl3UVheC8Gz_zmNX6dg9NZLoy1tg4-sz3_Wvvyx4WpvKnsDG9yKlZqHhZR78dhk63V7Z5IJILHTffuWg4zvNsINfMpRL4fS-37FIwKFarviptnFy8PIx_m5Y0srO2z8ks41xqnvwLDbq1NoMlbryp1z3z-KOP4359Zhc3v3D7yMNNaazBn83VYacEoaY_6FIe6fg_d2AZcjwpdTUscQK1CrlA4NHmPZJKTEQJO6vNJCEqJog5uJY_9IUFMTM6r0qdOFNWUXH5MvAVjE577V08XA9q2YqCTKJAlVVFguZZOIvPCjHMbW2eF5Ug8F2RmjKDIMK7xMWaJjF0gjEDkIzKThdrJhG3BQl7kdhuIdUwGkkeGmYwHTiEEUfghoZElInFsBzY8sdL3ptpG2tJpB447dqR4ArxbI8strjwNha-ZGOPFcvfvqUewNHga3qV31_e3e7Ds-dwEe-3DQvlR2QOEFaU-rHfTF0TRxa8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+Scale+Estimation+in+Real-Time+Monocular+SFM+for+Autonomous+Driving&rft.au=Shiyu+Song&rft.au=Chandraker%2C+Manmohan&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1566&rft.epage=1573&rft_id=info:doi/10.1109%2FCVPR.2014.203&rft.externalDocID=6909599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon