Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving
Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo ove...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1566 - 1573 |
---|---|
Main Authors | , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2014.203 |
Cover
Loading…
Abstract | Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo over long driving sequences. Our ground plane estimation uses multiple cues like sparse features, dense inter-frame stereo and (when applicable) object detection. A data-driven mechanism is proposed to learn models from training data that relate observation covariances for each cue to error behavior of its underlying variables. During testing, this allows per-frame adaptation of observation covariances based on relative confidences inferred from visual data. Our framework significantly boosts not only the accuracy of monocular self-localization, but also that of applications like object localization that rely on the ground plane. Experiments on the KITTI dataset demonstrate the accuracy of our ground plane estimation, monocular SFM and object localization relative to ground truth, with detailed comparisons to prior art. |
---|---|
AbstractList | Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system that corrects for scale drift using a novel cue combination framework for ground plane estimation, yielding accuracy comparable to stereo over long driving sequences. Our ground plane estimation uses multiple cues like sparse features, dense inter-frame stereo and (when applicable) object detection. A data-driven mechanism is proposed to learn models from training data that relate observation covariances for each cue to error behavior of its underlying variables. During testing, this allows per-frame adaptation of observation covariances based on relative confidences inferred from visual data. Our framework significantly boosts not only the accuracy of monocular self-localization, but also that of applications like object localization that rely on the ground plane. Experiments on the KITTI dataset demonstrate the accuracy of our ground plane estimation, monocular SFM and object localization relative to ground truth, with detailed comparisons to prior art. |
Author | Shiyu Song Chandraker, Manmohan |
Author_xml | – sequence: 1 surname: Shiyu Song fullname: Shiyu Song organization: Univ. of California, San Diego, La Jolla, CA, USA – sequence: 2 givenname: Manmohan surname: Chandraker fullname: Chandraker, Manmohan organization: NEC Labs. America, Cupertino, CA, USA |
BookMark | eNpNTztPwzAYNKhIlNKRicUjS4odP2KPVWmhUitQW1gjx_2MLCVxiRMk_j2WysBydzqdTnc3aNSGFhC6o2RGKdGPi4-33SwnlCdgF2iqC0V5obWgVIlLNKZEskxqqkf_9DWaxugrkstCcsHkGK13oRpij_fW1ICXsfeN6X1osW_xDkydHXwDeBvaYIfadHi_2mIXOjwf-uQ1YYj4qfPfvv28RVfO1BGmfzxB76vlYfGSbV6f14v5JvM5UX2mcwK8Uk45rqjhHAQ4kMDTJ0eMPVKhLeNVoiMrlHBEWqk1k8YaWjlVsAl6OPeeuvA1QOzLxkcLdW1aSHNKKotCE0EoSdH7c9QDQHnq0rfup5SaaJEqfwFrhl2t |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/CVPR.2014.203 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781479951185 1479951188 |
EISSN | 1063-6919 |
EndPage | 1573 |
ExternalDocumentID | 6909599 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-920e4b8f8f481a44e5efe6e4109f0acd159c34b159d3785f06c69936aca1bf873 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Tue Aug 05 11:34:40 EDT 2025 Wed Aug 27 04:30:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-920e4b8f8f481a44e5efe6e4109f0acd159c34b159d3785f06c69936aca1bf873 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1677905010 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6909599 proquest_miscellaneous_1677905010 |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764536 ssj0023720 ssj0003211698 |
Score | 2.2715423 |
Snippet | Scale drift is a crucial challenge for monocular autonomous driving to emulate the performance of stereo. This paper presents a real-time monocular SFM system... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1566 |
SubjectTerms | Accuracy Autonomous Autonomous driving Cameras Computer vision Drift Estimation Ground plane Localization Object localization Pattern recognition Position (location) Real time Roads Structure from motion Three-dimensional displays Training Visualization |
Title | Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving |
URI | https://ieeexplore.ieee.org/document/6909599 https://www.proquest.com/docview/1677905010 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMOJXauLRwli7rj0ahKAJhqAYbsta2oSYbAa2i3-9r_uARD142tJkS_de997vfSN0pxQ3oLUFMVZ6hGmPEUDVijAJyji0loliisLshU-X7HkVrBrofl8LY4wpks9M390Wsfx1qnPnKhuAJScDKZuoCYZbWatVnx2fh5wF5ezuQgpTsGy43EcUfDeNpYh8ckq4HMpDv83B6H2-cElezsVCqykrv0RzoW8mbTSrd1qmmXz080z19dePJo7__ZRj1D1U9uH5XmedoIZJTlG7gqK4-tF3sFRPe6jXOuhpkap8l8EC6BQ8BtFQVj3iTYIXADeJqybBICPSIrUVv05mGBAxfsgzVziR5jv8uN04_0UXLSfjt9GUVIMYyMb3REak7xmmhBXAumHMmAmMNdwwIJ71Yr0GSKQpU3BZ01AE1uOaA-7hsY6HyoqQnqFWkibmHGFjqfAE8zXVMfOsBAAi4UVcAUt4aGkPdRyxos-y10ZU0amHbmt2RHD-XVAjTgzsPBpy1zExALPy4u9HL9GR422Z3nWFWtk2N9cAJDJ1U5ygb_BOwmY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH64HPTkjrsRPJqxbdI0OYo6jMuIjAveSpNJYBBacdqLv96XLiOoB08tgZT0veS9L28FONFaWNTaklqnAspNwCmiak25QmWcOMdl3UVheC8Gz_zmNX6dg9NZLoy1tg4-sz3_Wvvyx4WpvKnsDG9yKlZqHhZR78dhk63V7Z5IJILHTffuWg4zvNsINfMpRL4fS-37FIwKFarviptnFy8PIx_m5Y0srO2z8ks41xqnvwLDbq1NoMlbryp1z3z-KOP4359Zhc3v3D7yMNNaazBn83VYacEoaY_6FIe6fg_d2AZcjwpdTUscQK1CrlA4NHmPZJKTEQJO6vNJCEqJog5uJY_9IUFMTM6r0qdOFNWUXH5MvAVjE577V08XA9q2YqCTKJAlVVFguZZOIvPCjHMbW2eF5Ug8F2RmjKDIMK7xMWaJjF0gjEDkIzKThdrJhG3BQl7kdhuIdUwGkkeGmYwHTiEEUfghoZElInFsBzY8sdL3ptpG2tJpB447dqR4ArxbI8strjwNha-ZGOPFcvfvqUewNHga3qV31_e3e7Ds-dwEe-3DQvlR2QOEFaU-rHfTF0TRxa8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Robust+Scale+Estimation+in+Real-Time+Monocular+SFM+for+Autonomous+Driving&rft.au=Shiyu+Song&rft.au=Chandraker%2C+Manmohan&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1566&rft.epage=1573&rft_id=info:doi/10.1109%2FCVPR.2014.203&rft.externalDocID=6909599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |