Redundancy in Linked Data Partitioning for Efficient Query Evaluation
The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between...
Saved in:
Published in | 2015 3rd International Conference on Future Internet of Things and Cloud pp. 497 - 504 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2015
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/FiCloud.2015.36 |
Cover
Abstract | The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase. |
---|---|
AbstractList | The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase. |
Author | Gergatsoulis, Manolis Damigos, Matthew Kalogeros, Eleftherios |
Author_xml | – sequence: 1 givenname: Eleftherios surname: Kalogeros fullname: Kalogeros, Eleftherios email: kalogero@ionio.gr organization: Ionian Univ., Corfu, Greece – sequence: 2 givenname: Manolis surname: Gergatsoulis fullname: Gergatsoulis, Manolis email: manolis@ionio.gr organization: Ionian Univ., Corfu, Greece – sequence: 3 givenname: Matthew surname: Damigos fullname: Damigos, Matthew email: mgdamig@gmail.com organization: Ionian Univ., Corfu, Greece |
BookMark | eNotzMtKxDAUgOEICjrjrF24yQu05tLkpEupnVEoeEHXw2lzIsGaSi9C315EV__m49-w0zQkYuxKilxKUd7sY9UPi8-VkCbX9oRtZGFBOyl0ec520xRbUTgwUllzweoX8kvymLqVx8SbmD7I8zuckT_hOMc5Dimmdx6GkdchxC5SmvnzQuPK62_sF_wVl-wsYD_R7r9b9ravX6v7rHk8PFS3TRaVcHMG2pugAAiLUEDwzhamBWG8tYAYCEA500qBLYHQnek6dCV615JzTtlSb9n13zcS0fFrjJ84rkfQQjjj9A_cEkv- |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/FiCloud.2015.36 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467381039 9781467381031 |
EndPage | 504 |
ExternalDocumentID | 7300858 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i208t-73d5f277ea4f47fd8645b705d667aafe77285b10abe703c5cca89ad8be8882693 |
IEDL.DBID | RIE |
IngestDate | Wed Dec 20 05:19:00 EST 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-73d5f277ea4f47fd8645b705d667aafe77285b10abe703c5cca89ad8be8882693 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7300858 |
PublicationCentury | 2000 |
PublicationDate | 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 3rd International Conference on Future Internet of Things and Cloud |
PublicationTitleAbbrev | FiCloud |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib048751265 |
Score | 1.5987321 |
Snippet | The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 497 |
SubjectTerms | Algorithm design and analysis Cloud Computing Distributed databases Electronic mail File systems Graph Querying Linked data Map-Reduce Nickel Partitioning algorithms Resource description framework Semantic Web |
Title | Redundancy in Linked Data Partitioning for Efficient Query Evaluation |
URI | https://ieeexplore.ieee.org/document/7300858 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62Pfmksom_yYOPtmu7pEmfZ8cQJlMc7G0kzRWG0sloH-Zfb67tpogPvoUS2iR31_suufsCcBcRy5yx0rPII48bZ1LO5kLPahd7oA1yrulEd_YUTxf8cSmWHbg_1MIgYp18hj4167N8u8kq2iobEre6EqoLXadmTa3WXncId4dRLFr2njBIhpP1-H1TERtoKHyiYP5xfUrtPSbHMNt_t0kaefOr0vjZ5y9Kxv8O7AQG33V6bH7wQKfQwaIP6QtSZRj9Ndm6YBRsomUPutRsTnrS7sAyh1ZZWhNIuHez5wq3O5YeuL8HsJikr-Op116W4K2jQJWeHFmRR1Ki5jmXuVUxF0YGwsax1DpHh6KVMGGgDTojz4STnEq0VQZdDBzFyegMesWmwHNgmebSCq4d_LLcddY6RAdMNArDA4XiAvq0BKuPhg9j1c7-8u_HV3BEEmiS5q6hV24rvHGOvDS3tQS_AAlCn2I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhJDRi_7cGjG9to13LGEVQgaCDhRtr1LSGSzZDtoH-97TbQGA_emqXp1-vb-732vV8B7gLLMqc0dzTSwKHKqJTROd_R0vgeqL2ESnujO56Ewzl9WrBFA-53uTCIWAafoWuL5V2-zuLCHpV1LLe6YGIP9o3dp6zK1truHou8_SBkNX-P7_U6g1V_nRWWD9RnriVh_vGASmk_Bkcw3vZchY28uUWu3PjzFynjf4d2DO3vTD0y3dmgE2hg2oLoFW1umP1vklVKrLuJmjzIXJKp3Sn1GSwxeJVEJYWEaZu8FLj5INGO_bsN80E06w-d-rkEZxV4Ind4V7Mk4BwlTShPtAgpU9xjOgy5lAkaHC2Y8j2p0Kh5zIzsRE9qodB4wUHY655CM81SPAMSS8o1o9IAME1NZSl9NNBEIlPUE8jOoWWXYPleMWIs69lf_P35Fg6Gs_FoOXqcPF_CoZVGFUJ3Bc18U-C1Meu5uiml-QWRgaKv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+3rd+International+Conference+on+Future+Internet+of+Things+and+Cloud&rft.atitle=Redundancy+in+Linked+Data+Partitioning+for+Efficient+Query+Evaluation&rft.au=Kalogeros%2C+Eleftherios&rft.au=Gergatsoulis%2C+Manolis&rft.au=Damigos%2C+Matthew&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=497&rft.epage=504&rft_id=info:doi/10.1109%2FFiCloud.2015.36&rft.externalDocID=7300858 |