Redundancy in Linked Data Partitioning for Efficient Query Evaluation

The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between...

Full description

Saved in:
Bibliographic Details
Published in2015 3rd International Conference on Future Internet of Things and Cloud pp. 497 - 504
Main Authors Kalogeros, Eleftherios, Gergatsoulis, Manolis, Damigos, Matthew
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
DOI10.1109/FiCloud.2015.36

Cover

Abstract The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase.
AbstractList The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following assumptions: a) Data graphs are arbitrarily partitioned in the distributed file system is such a way that replication of data triples between the data segments is allowed. b) Data triples are replicated is such a way that answers to a special form of queries, called subject-object star queries, can be obtained from a single data segment. c) Each query posed by the user, can be transformed into a set of subject-object star sub queries. We propose a one and a half phase, scalable, Map-Reduce algorithm that efficiently computes the answers of the initial query by computing and appropriately combining the sub query answers. We prove that, under certain conditions, query can be answered in a single map-reduce phase.
Author Gergatsoulis, Manolis
Damigos, Matthew
Kalogeros, Eleftherios
Author_xml – sequence: 1
  givenname: Eleftherios
  surname: Kalogeros
  fullname: Kalogeros, Eleftherios
  email: kalogero@ionio.gr
  organization: Ionian Univ., Corfu, Greece
– sequence: 2
  givenname: Manolis
  surname: Gergatsoulis
  fullname: Gergatsoulis, Manolis
  email: manolis@ionio.gr
  organization: Ionian Univ., Corfu, Greece
– sequence: 3
  givenname: Matthew
  surname: Damigos
  fullname: Damigos, Matthew
  email: mgdamig@gmail.com
  organization: Ionian Univ., Corfu, Greece
BookMark eNotzMtKxDAUgOEICjrjrF24yQu05tLkpEupnVEoeEHXw2lzIsGaSi9C315EV__m49-w0zQkYuxKilxKUd7sY9UPi8-VkCbX9oRtZGFBOyl0ec520xRbUTgwUllzweoX8kvymLqVx8SbmD7I8zuckT_hOMc5Dimmdx6GkdchxC5SmvnzQuPK62_sF_wVl-wsYD_R7r9b9ravX6v7rHk8PFS3TRaVcHMG2pugAAiLUEDwzhamBWG8tYAYCEA500qBLYHQnek6dCV615JzTtlSb9n13zcS0fFrjJ84rkfQQjjj9A_cEkv-
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FiCloud.2015.36
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467381039
9781467381031
EndPage 504
ExternalDocumentID 7300858
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i208t-73d5f277ea4f47fd8645b705d667aafe77285b10abe703c5cca89ad8be8882693
IEDL.DBID RIE
IngestDate Wed Dec 20 05:19:00 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-73d5f277ea4f47fd8645b705d667aafe77285b10abe703c5cca89ad8be8882693
PageCount 8
ParticipantIDs ieee_primary_7300858
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 3rd International Conference on Future Internet of Things and Cloud
PublicationTitleAbbrev FiCloud
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048751265
Score 1.5987321
Snippet The problem of efficient querying large amount of linked data using Map-Reduce is investigated in this paper. The proposed approach is based on the following...
SourceID ieee
SourceType Publisher
StartPage 497
SubjectTerms Algorithm design and analysis
Cloud Computing
Distributed databases
Electronic mail
File systems
Graph Querying
Linked data
Map-Reduce
Nickel
Partitioning algorithms
Resource description framework
Semantic Web
Title Redundancy in Linked Data Partitioning for Efficient Query Evaluation
URI https://ieeexplore.ieee.org/document/7300858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62Pfmksom_yYOPtmu7pEmfZ8cQJlMc7G0kzRWG0sloH-Zfb67tpogPvoUS2iR31_suufsCcBcRy5yx0rPII48bZ1LO5kLPahd7oA1yrulEd_YUTxf8cSmWHbg_1MIgYp18hj4167N8u8kq2iobEre6EqoLXadmTa3WXncId4dRLFr2njBIhpP1-H1TERtoKHyiYP5xfUrtPSbHMNt_t0kaefOr0vjZ5y9Kxv8O7AQG33V6bH7wQKfQwaIP6QtSZRj9Ndm6YBRsomUPutRsTnrS7sAyh1ZZWhNIuHez5wq3O5YeuL8HsJikr-Op116W4K2jQJWeHFmRR1Ki5jmXuVUxF0YGwsax1DpHh6KVMGGgDTojz4STnEq0VQZdDBzFyegMesWmwHNgmebSCq4d_LLcddY6RAdMNArDA4XiAvq0BKuPhg9j1c7-8u_HV3BEEmiS5q6hV24rvHGOvDS3tQS_AAlCn2I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhJDRi_7cGjG9to13LGEVQgaCDhRtr1LSGSzZDtoH-97TbQGA_emqXp1-vb-732vV8B7gLLMqc0dzTSwKHKqJTROd_R0vgeqL2ESnujO56Ewzl9WrBFA-53uTCIWAafoWuL5V2-zuLCHpV1LLe6YGIP9o3dp6zK1truHou8_SBkNX-P7_U6g1V_nRWWD9RnriVh_vGASmk_Bkcw3vZchY28uUWu3PjzFynjf4d2DO3vTD0y3dmgE2hg2oLoFW1umP1vklVKrLuJmjzIXJKp3Sn1GSwxeJVEJYWEaZu8FLj5INGO_bsN80E06w-d-rkEZxV4Ind4V7Mk4BwlTShPtAgpU9xjOgy5lAkaHC2Y8j2p0Kh5zIzsRE9qodB4wUHY655CM81SPAMSS8o1o9IAME1NZSl9NNBEIlPUE8jOoWWXYPleMWIs69lf_P35Fg6Gs_FoOXqcPF_CoZVGFUJ3Bc18U-C1Meu5uiml-QWRgaKv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+3rd+International+Conference+on+Future+Internet+of+Things+and+Cloud&rft.atitle=Redundancy+in+Linked+Data+Partitioning+for+Efficient+Query+Evaluation&rft.au=Kalogeros%2C+Eleftherios&rft.au=Gergatsoulis%2C+Manolis&rft.au=Damigos%2C+Matthew&rft.date=2015-08-01&rft.pub=IEEE&rft.spage=497&rft.epage=504&rft_id=info:doi/10.1109%2FFiCloud.2015.36&rft.externalDocID=7300858