Distributed PV power forecasting using genetic algorithm based neural network approach

In this paper, a distributed photovoltaic (PV) power forecasting method is proposed by using genetic algorithm based neural network approach. With the large-scale application of PV power generation in the applications of society, and the characteristic of volatility and intermittent, and power forec...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Mechatronic Systems pp. 557 - 560
Main Authors Tao, Yuqi, Chen, Yuguo
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.08.2014
Subjects
Online AccessGet full text
ISSN2325-0682
2325-0690
DOI10.1109/ICAMechS.2014.6911608

Cover

Abstract In this paper, a distributed photovoltaic (PV) power forecasting method is proposed by using genetic algorithm based neural network approach. With the large-scale application of PV power generation in the applications of society, and the characteristic of volatility and intermittent, and power forecasting of PV distributed have played a more important role in research of control strategies for microgrid and the dispatch of grid power and improvement of power quality. This paper mainly use genetic algorithm to optimize the weights and thresholds of BP Neural Network, which improves the forecasting accuracy of BP Neural Network of forecasting model. The effectiveness of the proposed method is confirmed by the simulation results of distributed PV power forecasting.
AbstractList In this paper, a distributed photovoltaic (PV) power forecasting method is proposed by using genetic algorithm based neural network approach. With the large-scale application of PV power generation in the applications of society, and the characteristic of volatility and intermittent, and power forecasting of PV distributed have played a more important role in research of control strategies for microgrid and the dispatch of grid power and improvement of power quality. This paper mainly use genetic algorithm to optimize the weights and thresholds of BP Neural Network, which improves the forecasting accuracy of BP Neural Network of forecasting model. The effectiveness of the proposed method is confirmed by the simulation results of distributed PV power forecasting.
Author Yuqi Tao
Yuguo Chen
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Tao
  fullname: Tao, Yuqi
– sequence: 2
  givenname: Yuguo
  surname: Chen
  fullname: Chen, Yuguo
BookMark eNo9UFtLwzAUjjLBbe4XiNBHXzpPkjaXR5lXmCiow7eSpukW7ZqapAz_vR0OX853OHw3zgSNWtcahC4wzDEGefW4uH4yevM6J4CzOZMYMxBHaIIzLiWjAn8cozGhJE-BSRj974KcolkInwCAZQ5CwBitbmyI3pZ9NFXysko6tzM-qZ03WoVo23XSh_1cm9ZEqxPVrJ23cbNNShUGSWt6r5oB4s75r0R1nXdKb87QSa2aYGYHnKL3u9u3xUO6fL4f6i9TS0DElBOdZ7XOSlXpDFdlPTTVhNOykhKGM8kqpgjXimmKeUVkrilQhQlTZSkqQafo8s93iP3uTYjF1gZtmka1xvWhwBwwcMazPfX8j2qNMUXn7Vb5n-LwPfoLkLZlsQ
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/ICAMechS.2014.6911608
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 147996381X
9781479963812
EISSN 2325-0690
EndPage 560
ExternalDocumentID 6911608
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-72c54fc4badc41dbf232c273bd990c4b24d6a27ca6c317d295c303a126abb8d83
IEDL.DBID RIE
ISSN 2325-0682
IngestDate Fri Jul 11 02:43:15 EDT 2025
Wed Aug 27 04:28:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-72c54fc4badc41dbf232c273bd990c4b24d6a27ca6c317d295c303a126abb8d83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1701076748
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1701076748
ieee_primary_6911608
PublicationCentury 2000
PublicationDate 20140801
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 20140801
  day: 01
PublicationDecade 2010
PublicationTitle International Conference on Advanced Mechatronic Systems
PublicationTitleAbbrev ICAMechS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950880
Score 1.7159092
Snippet In this paper, a distributed photovoltaic (PV) power forecasting method is proposed by using genetic algorithm based neural network approach. With the...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 557
SubjectTerms Biological neural networks
Computer simulation
Conferences
Distributed PV power forecasting
Electric power distribution
Forecasting
genetic algorithm
Genetic algorithms
neural network
Neural networks
Photovoltaic cells
Photovoltaic systems
Predictive models
Solar cells
Strategy
Title Distributed PV power forecasting using genetic algorithm based neural network approach
URI https://ieeexplore.ieee.org/document/6911608
https://www.proquest.com/docview/1701076748
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFG6QJ33xAka8pSY-OthKd-HRoARNMCQK4W3pbUBERmB78dd7Thlg1AeftixZ07SnPV_a73wfIbeAIqSJdMthphk43A9hzQnBHUAGsDeqSIfW67D3EnQH_Hnkj0rkblsLY4yx5DNTx1d7l69TleNRWSOAlRlgZe8ehNm6Vmt3nmLtTF3rJcd89FJhRcGO57YaT-37nlGTV-Ry8XrRTmGo8msXtqmlc0h6m06tGSXv9TyTdfX5Q6_xv70-ItVdER_tb9PTMSmZ-Qk5-KY_WCHDB5TNRccro2l_SBdomUYBxholVsiHpkiLH1MIMqx1pGI2TpfTbPJBMflpimKYYgYPSyWnG33yKhl0Ht_aXacwWnCmzI0yJ2TK54niUmjFPS0TGEIFuEZqyFXwmXEdCBYqESiAG5q1fAWZT3gsEFJGOmqekvI8nZszQmWStJh2PeUlkoehjgAfKNcY5foKGktqpIIjFC_WWhpxMTg1crOZgxjiGy8txNyk-SpGvXgXFYei879_vSD7OKlrUt4lKWfL3FwBUMjktY2QL7HyvVY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0ILtSNDzDisyYuHZgpnQdLgxJQICQCYTfpa4CIQGDY-PXeOwxg1IWrmUwyTdPe9p60555DyD2gCGkCXbGYKXsWd31Yc0JwC5AB7I0q0H7iddhqe_Uefxm4gwx52NbCGGMS8pkp4mtyl69naoVHZSUPVqaHlb17kPe5u67W2p2oJIamduImx1x0U2FpyY5jV0qN6mPLqNEbsrl4MW0ptVT5tQ8nyaV2RFqbbq05Je_FVSyL6vOHYuN_-31M8rsyPtrZJqgTkjHTU3L4TYEwR_pPKJyLnldG006fztE0jQKQNUoskRFNkRg_pBBmWO1IxWQ4W4zj0QfF9KcpymGKCTwSMjndKJTnSa_23K3WrdRqwRozO4gtnymXR4pLoRV3tIxgCBUgG6khW8FnxrUnmK-EpwBwaFZxFeQ-4TBPSBnooHxGstPZ1JwTKqOowrTtKCeS3Pd1AAhB2cYo21XQWFQgORyhcL5W0wjTwSmQu80chBDheG0hpma2WoaoGG-j5lBw8fevt2S_3m01w2aj_XpJDnCC1xS9K5KNFytzDbAhljdJtHwBxdnAow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Mechatronic+Systems&rft.atitle=Distributed+PV+power+forecasting+using+genetic+algorithm+based+neural+network+approach&rft.au=Yuqi+Tao&rft.au=Yuguo+Chen&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=2325-0682&rft.spage=557&rft.epage=560&rft_id=info:doi/10.1109%2FICAMechS.2014.6911608&rft.externalDocID=6911608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-0682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-0682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-0682&client=summon