Dynamic Urban Surveillance Video Stream Processing Using Fog Computing

The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for ex...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Second International Conference on Multimedia Big Data (BigMM) pp. 105 - 112
Main Authors Ning Chen, Yu Chen, Yang You, Haibin Ling, Pengpeng Liang, Zimmermann, Roger
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2016
Subjects
Online AccessGet full text
DOI10.1109/BigMM.2016.53

Cover

Abstract The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for extracting new living patterns and making urban plans, efficient data processing and instant decision making are still key issues, especially in emergency situations requesting quick response with low latency. Fog Computing, as the extension of Cloud Computing, enables the computing tasks accomplished directly at the edge of the network and is characterized as low latency and real time computing. However, it is non-trivial to coordinate highly heterogeneous Fog Computing nodes to function as a homogeneous platform. In this paper, taking urban traffic surveillance as a case study, a dynamic video stream processing scheme is proposed to meet the requirements of real-time information processing and decision making. Furthermore, we have explored the potential to enable multi-target tracking function using a simpler single target tracking algorithm. A prototype is built and the performance is evaluated. The experimental results show that our scheme is a promising solution for smart urban surveillance applications.
AbstractList The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for extracting new living patterns and making urban plans, efficient data processing and instant decision making are still key issues, especially in emergency situations requesting quick response with low latency. Fog Computing, as the extension of Cloud Computing, enables the computing tasks accomplished directly at the edge of the network and is characterized as low latency and real time computing. However, it is non-trivial to coordinate highly heterogeneous Fog Computing nodes to function as a homogeneous platform. In this paper, taking urban traffic surveillance as a case study, a dynamic video stream processing scheme is proposed to meet the requirements of real-time information processing and decision making. Furthermore, we have explored the potential to enable multi-target tracking function using a simpler single target tracking algorithm. A prototype is built and the performance is evaluated. The experimental results show that our scheme is a promising solution for smart urban surveillance applications.
Author Pengpeng Liang
Ning Chen
Haibin Ling
Yang You
Zimmermann, Roger
Yu Chen
Author_xml – sequence: 1
  surname: Ning Chen
  fullname: Ning Chen
  organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA
– sequence: 2
  surname: Yu Chen
  fullname: Yu Chen
  organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA
– sequence: 3
  surname: Yang You
  fullname: Yang You
  organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA
– sequence: 4
  surname: Haibin Ling
  fullname: Haibin Ling
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
– sequence: 5
  surname: Pengpeng Liang
  fullname: Pengpeng Liang
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
– sequence: 6
  givenname: Roger
  surname: Zimmermann
  fullname: Zimmermann, Roger
  organization: Dept. of Comput. Sci., Nat. Univ. of Singapore, Singapore, Singapore
BookMark eNotjr1OwzAURo0EAy2MTCx-gQRf_8UZIZCC1KqVSlgrx7mJLCVO5aRIfXsqYPmOznL0Lch1GAMS8gAsBWD504vvNpuUM9CpEldkAYrljEOWq1tSvp6DHbyjVaxtoPtT_Ebf9zY4pF--wZHu54h2oLs4OpwmHzpa_W45drQYh-NpvtgduWltP-H9P5ekKt8-i_dkvV19FM_rxHNm5kRZCVqZGlzjwGUGastb3rY55qgFNA5rLrhRomkMZ1pf7gNyidoIJwVDsSSPf12PiIdj9ION50OmpGJMih-Rvkcf
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigMM.2016.53
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509021795
9781509021796
EndPage 112
ExternalDocumentID 7545004
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i208t-5a41658b1cdc1c781ba2f2ff9e9e631dceb232853dd820661101e24e683c430e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:35:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-5a41658b1cdc1c781ba2f2ff9e9e631dceb232853dd820661101e24e683c430e3
PageCount 8
ParticipantIDs ieee_primary_7545004
PublicationCentury 2000
PublicationDate 20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 20160401
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE Second International Conference on Multimedia Big Data (BigMM)
PublicationTitleAbbrev BigMM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0599334
Snippet The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely...
SourceID ieee
SourceType Publisher
StartPage 105
SubjectTerms Cloud computing
Fog Computing
real-time processing
Real-time systems
Smart City
Speeding Traffic
Streaming media
Surveillance
Target tracking
Urban Surveillance
Vehicles
Title Dynamic Urban Surveillance Video Stream Processing Using Fog Computing
URI https://ieeexplore.ieee.org/document/7545004
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxGieOk6x8RBVSEBIUdati-1JViARVCQO_nrMTWoQY2JIon75I7-x79x4hl1ymwk9SwbQIFROhKFnBuWFCJbLUxujIeQPmD3I6E_fzaD4gV5teGABw5DPw7Kar5Ztat3apbBIj3Dvxzx38zbpera1s5uR6tcxzS9aSnrU6_mGW4rAi2yP591M6isir1zbK05-_BBj_-xr7ZLztyqOPG7w5IAOoRiS77Szl6Wytioo-tesPsEZC9uSXlYGa2rpz8Ub7jgC8kjqaAM3qJe08HXBvTGbZ3fPNlPXeCGwV-EnDogIzqShRXBvNdYzJZxGUQVmmkIIMudE4Yw4DxGJjnGI7jhCHQIBMQoyKD-EhGVZ1BUeEQmprjUbG3GDcNCQlTonwPpobTB9UcUxGdgwW7538xaL__JO_D5-SXRuCjtxyRobNuoVzxO1GXbiAfQFWY5pn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsAEqEW88cCI0zpxXiuPqEBTIdGiblVsX6oKkaAqYeDXc3ZKixADmxPl4fiG75z77vsIueRBLPpRLJgSnmTCEznLONdMyCjIldbKt96A6SgYTMTD1J-2yNW6FwYALPkMHDO0tXxdqtr8KuuFCPdW_HMLB8JvurU2wpm968U8TQ1dK3CM2fEPuxSLFskuSb_f05BEXp26ko76_CXB-N-J7JHupi-PPq0RZ5-0oOiQ5LYxlaeTpcwK-lwvP8BYCZmLXxYaSmoqz9kbXfUE4J3UEgVoUs5p4-qAR10ySe7GNwO2ckdgC7cfVczPMJfyI8mVVlyFmH5mbu7meQwxBB7XCvfMnotorLXVbMcV4uAKCCIP49IH74C0i7KAQ0IhNtVGHYRcY-QURDluivA5imtMIGR2RDpmDWbvjQDGbPX5x3-fviDbg3E6nA3vR48nZMeEo6G6nJJ2tazhDFG8kuc2eF-cU520
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Second+International+Conference+on+Multimedia+Big+Data+%28BigMM%29&rft.atitle=Dynamic+Urban+Surveillance+Video+Stream+Processing+Using+Fog+Computing&rft.au=Ning+Chen&rft.au=Yu+Chen&rft.au=Yang+You&rft.au=Haibin+Ling&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=105&rft.epage=112&rft_id=info:doi/10.1109%2FBigMM.2016.53&rft.externalDocID=7545004