Dynamic Urban Surveillance Video Stream Processing Using Fog Computing
The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for ex...
Saved in:
Published in | 2016 IEEE Second International Conference on Multimedia Big Data (BigMM) pp. 105 - 112 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/BigMM.2016.53 |
Cover
Abstract | The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for extracting new living patterns and making urban plans, efficient data processing and instant decision making are still key issues, especially in emergency situations requesting quick response with low latency. Fog Computing, as the extension of Cloud Computing, enables the computing tasks accomplished directly at the edge of the network and is characterized as low latency and real time computing. However, it is non-trivial to coordinate highly heterogeneous Fog Computing nodes to function as a homogeneous platform. In this paper, taking urban traffic surveillance as a case study, a dynamic video stream processing scheme is proposed to meet the requirements of real-time information processing and decision making. Furthermore, we have explored the potential to enable multi-target tracking function using a simpler single target tracking algorithm. A prototype is built and the performance is evaluated. The experimental results show that our scheme is a promising solution for smart urban surveillance applications. |
---|---|
AbstractList | The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely distributed and huge amount of dynamic real-time data are collected and processed. Although vast volume of dynamic data are available for extracting new living patterns and making urban plans, efficient data processing and instant decision making are still key issues, especially in emergency situations requesting quick response with low latency. Fog Computing, as the extension of Cloud Computing, enables the computing tasks accomplished directly at the edge of the network and is characterized as low latency and real time computing. However, it is non-trivial to coordinate highly heterogeneous Fog Computing nodes to function as a homogeneous platform. In this paper, taking urban traffic surveillance as a case study, a dynamic video stream processing scheme is proposed to meet the requirements of real-time information processing and decision making. Furthermore, we have explored the potential to enable multi-target tracking function using a simpler single target tracking algorithm. A prototype is built and the performance is evaluated. The experimental results show that our scheme is a promising solution for smart urban surveillance applications. |
Author | Pengpeng Liang Ning Chen Haibin Ling Yang You Zimmermann, Roger Yu Chen |
Author_xml | – sequence: 1 surname: Ning Chen fullname: Ning Chen organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA – sequence: 2 surname: Yu Chen fullname: Yu Chen organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA – sequence: 3 surname: Yang You fullname: Yang You organization: Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA – sequence: 4 surname: Haibin Ling fullname: Haibin Ling organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA – sequence: 5 surname: Pengpeng Liang fullname: Pengpeng Liang organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA – sequence: 6 givenname: Roger surname: Zimmermann fullname: Zimmermann, Roger organization: Dept. of Comput. Sci., Nat. Univ. of Singapore, Singapore, Singapore |
BookMark | eNotjr1OwzAURo0EAy2MTCx-gQRf_8UZIZCC1KqVSlgrx7mJLCVO5aRIfXsqYPmOznL0Lch1GAMS8gAsBWD504vvNpuUM9CpEldkAYrljEOWq1tSvp6DHbyjVaxtoPtT_Ebf9zY4pF--wZHu54h2oLs4OpwmHzpa_W45drQYh-NpvtgduWltP-H9P5ekKt8-i_dkvV19FM_rxHNm5kRZCVqZGlzjwGUGastb3rY55qgFNA5rLrhRomkMZ1pf7gNyidoIJwVDsSSPf12PiIdj9ION50OmpGJMih-Rvkcf |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BigMM.2016.53 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509021795 9781509021796 |
EndPage | 112 |
ExternalDocumentID | 7545004 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i208t-5a41658b1cdc1c781ba2f2ff9e9e631dceb232853dd820661101e24e683c430e3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:35:57 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-5a41658b1cdc1c781ba2f2ff9e9e631dceb232853dd820661101e24e683c430e3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7545004 |
PublicationCentury | 2000 |
PublicationDate | 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 20160401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Second International Conference on Multimedia Big Data (BigMM) |
PublicationTitleAbbrev | BigMM |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0599334 |
Snippet | The recent rapid development of urbanization and Internet of things (IoT) encourages more and more research on Smart City in which computing devices are widely... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 105 |
SubjectTerms | Cloud computing Fog Computing real-time processing Real-time systems Smart City Speeding Traffic Streaming media Surveillance Target tracking Urban Surveillance Vehicles |
Title | Dynamic Urban Surveillance Video Stream Processing Using Fog Computing |
URI | https://ieeexplore.ieee.org/document/7545004 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxGieOk6x8RBVSEBIUdati-1JViARVCQO_nrMTWoQY2JIon75I7-x79x4hl1ymwk9SwbQIFROhKFnBuWFCJbLUxujIeQPmD3I6E_fzaD4gV5teGABw5DPw7Kar5Ztat3apbBIj3Dvxzx38zbpera1s5uR6tcxzS9aSnrU6_mGW4rAi2yP591M6isir1zbK05-_BBj_-xr7ZLztyqOPG7w5IAOoRiS77Szl6Wytioo-tesPsEZC9uSXlYGa2rpz8Ub7jgC8kjqaAM3qJe08HXBvTGbZ3fPNlPXeCGwV-EnDogIzqShRXBvNdYzJZxGUQVmmkIIMudE4Yw4DxGJjnGI7jhCHQIBMQoyKD-EhGVZ1BUeEQmprjUbG3GDcNCQlTonwPpobTB9UcUxGdgwW7538xaL__JO_D5-SXRuCjtxyRobNuoVzxO1GXbiAfQFWY5pn |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsAEqEW88cCI0zpxXiuPqEBTIdGiblVsX6oKkaAqYeDXc3ZKixADmxPl4fiG75z77vsIueRBLPpRLJgSnmTCEznLONdMyCjIldbKt96A6SgYTMTD1J-2yNW6FwYALPkMHDO0tXxdqtr8KuuFCPdW_HMLB8JvurU2wpm968U8TQ1dK3CM2fEPuxSLFskuSb_f05BEXp26ko76_CXB-N-J7JHupi-PPq0RZ5-0oOiQ5LYxlaeTpcwK-lwvP8BYCZmLXxYaSmoqz9kbXfUE4J3UEgVoUs5p4-qAR10ySe7GNwO2ckdgC7cfVczPMJfyI8mVVlyFmH5mbu7meQwxBB7XCvfMnotorLXVbMcV4uAKCCIP49IH74C0i7KAQ0IhNtVGHYRcY-QURDluivA5imtMIGR2RDpmDWbvjQDGbPX5x3-fviDbg3E6nA3vR48nZMeEo6G6nJJ2tazhDFG8kuc2eF-cU520 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Second+International+Conference+on+Multimedia+Big+Data+%28BigMM%29&rft.atitle=Dynamic+Urban+Surveillance+Video+Stream+Processing+Using+Fog+Computing&rft.au=Ning+Chen&rft.au=Yu+Chen&rft.au=Yang+You&rft.au=Haibin+Ling&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=105&rft.epage=112&rft_id=info:doi/10.1109%2FBigMM.2016.53&rft.externalDocID=7545004 |