Multi-subject fMRI connectivity analysis using sparse dictionary learning and multiset canonical correlation analysis

In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is ado...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 683 - 686
Main Authors Khalid, Muhammad Usman, Seghouane, Abd-Krim
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is adopted based on a combined framework of sparse dictionary learning (SDL) and multi-set canonical correlation analysis (MCCA) to obtain connectivity maps. The proposed technique encapsulates commonality and uniqueness solely based on sparsity of cross dataset corresponding components. It is validated using real fMRI data and its superior performance is illustrated using a simulation study, which shows its better capability in obtaining connectivity maps that are more specific.
AbstractList In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is adopted based on a combined framework of sparse dictionary learning (SDL) and multi-set canonical correlation analysis (MCCA) to obtain connectivity maps. The proposed technique encapsulates commonality and uniqueness solely based on sparsity of cross dataset corresponding components. It is validated using real fMRI data and its superior performance is illustrated using a simulation study, which shows its better capability in obtaining connectivity maps that are more specific.
Author Khalid, Muhammad Usman
Seghouane, Abd-Krim
Author_xml – sequence: 1
  givenname: Muhammad Usman
  surname: Khalid
  fullname: Khalid, Muhammad Usman
  email: muhammad.khalid@nicta.com.au
  organization: ANU Coll. of Eng. & Comput. Sci., Australian Nat. Univ., Canberra, ACT, Australia
– sequence: 2
  givenname: Abd-Krim
  surname: Seghouane
  fullname: Seghouane, Abd-Krim
  email: abd-krim.seghouane@unimelb.edu.au
  organization: Sch. of Eng., Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
BookMark eNo9kNtqwzAQRFVIoUmaDyh90Q841epiWY9t6MWQUOjlOazldVFwlGDZhfx9HVq6L8Myw2GYGZvEQyTGbkAsAYS7K98fyqUUYJYWcuVyc8FmoK1zUlltJmwKTpvMOllcsUVKOzGe1VoJPWXDZmj7kKWh2pHvebN5K7k_xDg-4Tv0J44R21MKiQ8pxC-ejtgl4nUY_UPE7sRbwi6eLYw1359piXrucSwZPLYjreuoxXP8H3bNLhtsEy3-dM4-nx4_Vi_Z-vW5XN2vsyBF0WcGcoECoC5kRdgUoACNsJjLRhaFIm0q77UXQI5E5dDkRuUelbXYVLIWas5uf7mBiLbHLuzHxtu_ldQPKlpgWw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2015.7163965
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479923745
9781479923748
EndPage 686
ExternalDocumentID 7163965
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i208t-5160a011d82beaf8131a507a62f2883e45bcc4c01e9e0b9a56536ca377afb2d03
IEDL.DBID RIE
ISSN 1945-7928
IngestDate Wed Aug 27 02:16:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-5160a011d82beaf8131a507a62f2883e45bcc4c01e9e0b9a56536ca377afb2d03
PageCount 4
ParticipantIDs ieee_primary_7163965
PublicationCentury 2000
PublicationDate 20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 20150401
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.0096335
Snippet In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance...
SourceID ieee
SourceType Publisher
StartPage 683
SubjectTerms Australia
Blind source separation
Correlation
Data models
Dictionaries
Encoding
fMRI
functional connectivity
K-SVD
MCCA
Principal component analysis
Title Multi-subject fMRI connectivity analysis using sparse dictionary learning and multiset canonical correlation analysis
URI https://ieeexplore.ieee.org/document/7163965
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkqRMnjr2CqFqkIgRU6lb5lapCoihNBvj1nJ0QHmJgiaIouli-xHfxfd99CF2kUmkjiA6ySIsgYXBQitsAUntFbaYy6vVTpndsPEtu5-m8gy5bLoy11oPPbOhOfS3frHXltsqGkNtTwdIu6sKPW83VavdTIBQmlNRF5MR1YYx5U8SMiBhOHq8mDseVho2NH2IqPpaMdtD0cxQ1hOQ5rEoV6vdfDRr_O8xdNPhi7eH7Nh7toY592Ufb3xoO9lHl-bbBplJu-wXn04cJ1g7qomsRCSybHiXY4eGXGJabYmOxWXn2gyzecKMysYQ7DfZoxI0tMfhn7QmWYK0oGnxda2yAZqObp-tx0AgvBKuY8DJII0YkfPiGx8rKnEc0kpA3ShbnTpzYJqnSOtEkssISJSQkhZRpSbNM5io2hB6gHjzWHiJMqSCxobCIgltYFnOZGCEtoZxprmV0hPpuAhevdW-NRTN3x39fPkFbzok1cuYU9cqismeQFJTq3L8NH-bQuKM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR0G88cBIUidOHHsFUTXQVAhaqVvlV6sKiaI0GeDXYzshPMTAEkWRdbF8ie_k-777ALiMuZCKIeklgWReRMxFCKo9k9oLrBORYKefkg1JfxzdTeJJC1w1XBittQOfad_eulq-WsrSHpV1TW6PGYnXwLqJ-3FQsbWaExUTDCOMqjJyZPswhrQuYwaIddOn69QiuWK_tvJDTsVFk942yD7nUYFInv2yEL58_9Wi8b8T3QH7X7w9-NBEpF3Q0i97YOtby8EOKB3j1luVwh7AwFn2mEJpwS6ykpGAvO5SAi0ifg7NhpOvNFQLx3_g-RusdSbmZqSCDo-40gU0Hlo6iqWxluc1wq4xtg_GvdvRTd-rpRe8RYho4cUBQdz8-oqGQvMZDXDATebISTiz8sQ6ioWUkUSBZhoJxk1aiInkOEn4TIQK4QPQNq_VhwBizFCosNlGjVtIElIeKcY1wpRIKnlwBDp2AaevVXeNab12x38_vgAb_VE2mA7S4f0J2LQOrXA0p6Bd5KU-MylCIc7dl_EBtDq77A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Multi-subject+fMRI+connectivity+analysis+using+sparse+dictionary+learning+and+multiset+canonical+correlation+analysis&rft.au=Khalid%2C+Muhammad+Usman&rft.au=Seghouane%2C+Abd-Krim&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1945-7928&rft.spage=683&rft.epage=686&rft_id=info:doi/10.1109%2FISBI.2015.7163965&rft.externalDocID=7163965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon