Multi-subject fMRI connectivity analysis using sparse dictionary learning and multiset canonical correlation analysis
In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is ado...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 683 - 686 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is adopted based on a combined framework of sparse dictionary learning (SDL) and multi-set canonical correlation analysis (MCCA) to obtain connectivity maps. The proposed technique encapsulates commonality and uniqueness solely based on sparsity of cross dataset corresponding components. It is validated using real fMRI data and its superior performance is illustrated using a simulation study, which shows its better capability in obtaining connectivity maps that are more specific. |
---|---|
AbstractList | In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance imaging (fMRI) data. Instead of applying the assumption of group-independence or multiset correlation maximization, an alternative approach is adopted based on a combined framework of sparse dictionary learning (SDL) and multi-set canonical correlation analysis (MCCA) to obtain connectivity maps. The proposed technique encapsulates commonality and uniqueness solely based on sparsity of cross dataset corresponding components. It is validated using real fMRI data and its superior performance is illustrated using a simulation study, which shows its better capability in obtaining connectivity maps that are more specific. |
Author | Khalid, Muhammad Usman Seghouane, Abd-Krim |
Author_xml | – sequence: 1 givenname: Muhammad Usman surname: Khalid fullname: Khalid, Muhammad Usman email: muhammad.khalid@nicta.com.au organization: ANU Coll. of Eng. & Comput. Sci., Australian Nat. Univ., Canberra, ACT, Australia – sequence: 2 givenname: Abd-Krim surname: Seghouane fullname: Seghouane, Abd-Krim email: abd-krim.seghouane@unimelb.edu.au organization: Sch. of Eng., Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia |
BookMark | eNo9kNtqwzAQRFVIoUmaDyh90Q841epiWY9t6MWQUOjlOazldVFwlGDZhfx9HVq6L8Myw2GYGZvEQyTGbkAsAYS7K98fyqUUYJYWcuVyc8FmoK1zUlltJmwKTpvMOllcsUVKOzGe1VoJPWXDZmj7kKWh2pHvebN5K7k_xDg-4Tv0J44R21MKiQ8pxC-ejtgl4nUY_UPE7sRbwi6eLYw1359piXrucSwZPLYjreuoxXP8H3bNLhtsEy3-dM4-nx4_Vi_Z-vW5XN2vsyBF0WcGcoECoC5kRdgUoACNsJjLRhaFIm0q77UXQI5E5dDkRuUelbXYVLIWas5uf7mBiLbHLuzHxtu_ldQPKlpgWw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2015.7163965 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1479923745 9781479923748 |
EndPage | 686 |
ExternalDocumentID | 7163965 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i208t-5160a011d82beaf8131a507a62f2883e45bcc4c01e9e0b9a56536ca377afb2d03 |
IEDL.DBID | RIE |
ISSN | 1945-7928 |
IngestDate | Wed Aug 27 02:16:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-5160a011d82beaf8131a507a62f2883e45bcc4c01e9e0b9a56536ca377afb2d03 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7163965 |
PublicationCentury | 2000 |
PublicationDate | 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 20150401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.0096335 |
Snippet | In this paper, we propose an effective technique to analyze task-based functional connectivity across multiple subjects for functional magnetic resonance... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 683 |
SubjectTerms | Australia Blind source separation Correlation Data models Dictionaries Encoding fMRI functional connectivity K-SVD MCCA Principal component analysis |
Title | Multi-subject fMRI connectivity analysis using sparse dictionary learning and multiset canonical correlation analysis |
URI | https://ieeexplore.ieee.org/document/7163965 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkqRMnjr2CqFqkIgRU6lb5lapCoihNBvj1nJ0QHmJgiaIouli-xHfxfd99CF2kUmkjiA6ySIsgYXBQitsAUntFbaYy6vVTpndsPEtu5-m8gy5bLoy11oPPbOhOfS3frHXltsqGkNtTwdIu6sKPW83VavdTIBQmlNRF5MR1YYx5U8SMiBhOHq8mDseVho2NH2IqPpaMdtD0cxQ1hOQ5rEoV6vdfDRr_O8xdNPhi7eH7Nh7toY592Ufb3xoO9lHl-bbBplJu-wXn04cJ1g7qomsRCSybHiXY4eGXGJabYmOxWXn2gyzecKMysYQ7DfZoxI0tMfhn7QmWYK0oGnxda2yAZqObp-tx0AgvBKuY8DJII0YkfPiGx8rKnEc0kpA3ShbnTpzYJqnSOtEkssISJSQkhZRpSbNM5io2hB6gHjzWHiJMqSCxobCIgltYFnOZGCEtoZxprmV0hPpuAhevdW-NRTN3x39fPkFbzok1cuYU9cqismeQFJTq3L8NH-bQuKM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR0G88cBIUidOHHsFUTXQVAhaqVvlV6sKiaI0GeDXYzshPMTAEkWRdbF8ie_k-777ALiMuZCKIeklgWReRMxFCKo9k9oLrBORYKefkg1JfxzdTeJJC1w1XBittQOfad_eulq-WsrSHpV1TW6PGYnXwLqJ-3FQsbWaExUTDCOMqjJyZPswhrQuYwaIddOn69QiuWK_tvJDTsVFk942yD7nUYFInv2yEL58_9Wi8b8T3QH7X7w9-NBEpF3Q0i97YOtby8EOKB3j1luVwh7AwFn2mEJpwS6ykpGAvO5SAi0ifg7NhpOvNFQLx3_g-RusdSbmZqSCDo-40gU0Hlo6iqWxluc1wq4xtg_GvdvRTd-rpRe8RYho4cUBQdz8-oqGQvMZDXDATebISTiz8sQ6ioWUkUSBZhoJxk1aiInkOEn4TIQK4QPQNq_VhwBizFCosNlGjVtIElIeKcY1wpRIKnlwBDp2AaevVXeNab12x38_vgAb_VE2mA7S4f0J2LQOrXA0p6Bd5KU-MylCIc7dl_EBtDq77A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Multi-subject+fMRI+connectivity+analysis+using+sparse+dictionary+learning+and+multiset+canonical+correlation+analysis&rft.au=Khalid%2C+Muhammad+Usman&rft.au=Seghouane%2C+Abd-Krim&rft.date=2015-04-01&rft.pub=IEEE&rft.issn=1945-7928&rft.spage=683&rft.epage=686&rft_id=info:doi/10.1109%2FISBI.2015.7163965&rft.externalDocID=7163965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7928&client=summon |