Hardware Implementations of Fixed-Point Atan2

The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares t...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Symposium on Computer Arithmetic pp. 34 - 41
Main Authors De Dinechin, Florent, Istoan, Matei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
ISSN1063-6889
DOI10.1109/ARITH.2015.23

Cover

Abstract The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares the prevalent CORDIC shift-and-add algorithm to two multiplier-based techniques. The first one computes the bivariate atan2 function as the composition of two univariate functions: the reciprocal, and the arctangent, each evaluated using bipartite or polynomial approximation methods. The second technique directly uses piecewise bivariate polynomial approximations of degree 1 or 2. Each of these approaches requires a relevant argument reduction, which is also discussed. All the algorithms are last-bit accurate, and implemented with similar care in the open-source FloPoCo framework. Based on synthesis results on FPGAs, their relevance domains are discussed.
AbstractList The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to recover the phase of a signal. This article studies for this context the implementation of atan2 with fixed-point inputs and outputs. It compares the prevalent CORDIC shift-and-add algorithm to two multiplier-based techniques. The first one computes the bivariate atan2 function as the composition of two univariate functions: the reciprocal, and the arctangent, each evaluated using bipartite or polynomial approximation methods. The second technique directly uses piecewise bivariate polynomial approximations of degree 1 or 2. Each of these approaches requires a relevant argument reduction, which is also discussed. All the algorithms are last-bit accurate, and implemented with similar care in the open-source FloPoCo framework. Based on synthesis results on FPGAs, their relevance domains are discussed.
Author De Dinechin, Florent
Istoan, Matei
Author_xml – sequence: 1
  givenname: Florent
  surname: De Dinechin
  fullname: De Dinechin, Florent
  email: florent.de-dinechin@insa-lyon.fr
  organization: INSA-Lyon, Univ. de Lyon, Villeurbanne, France
– sequence: 2
  givenname: Matei
  surname: Istoan
  fullname: Istoan, Matei
  email: matei.istoan@inria.fr
  organization: INSA-Lyon, Univ. de Lyon, Villeurbanne, France
BookMark eNotzEFLwzAUAOAIE1ynR09e-gfSveRlL82xDGcLA0XmeSTtK0TWdLQF9d970NN3-zKxSmNiIR4VFEqB21bvzakuNKhdofFGZMpY50oiVCuxVkAoqSzdncjm-RNAOUd2LWTtp-7LT5w3w_XCA6fFL3FMcz72-SF-cyffxpiWvFp80vfitveXmR_-3YiPw_NpX8vj60uzr44yaigXaRiCN7ZtCYGgYwKFxIRMLVujO-Mtma4MNrig2bSatGqDdsF7t-sx4EY8_b2Rmc_XKQ5--jlbDWgd4i_sX0LA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ARITH.2015.23
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1479986631
147998664X
9781479986637
9781479986644
EndPage 41
ExternalDocumentID 7203793
Genre orig-research
GroupedDBID 23M
29F
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i208t-4e0ba47cc63060de60136e63e6ce742d4a764d8b7b9b2e4c2621cb29baa95f3b3
IEDL.DBID RIE
ISSN 1063-6889
IngestDate Wed Aug 27 02:32:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-4e0ba47cc63060de60136e63e6ce742d4a764d8b7b9b2e4c2621cb29baa95f3b3
PageCount 8
ParticipantIDs ieee_primary_7203793
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings - Symposium on Computer Arithmetic
PublicationTitleAbbrev ARITH
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019967
Score 2.1029043
Snippet The atan2 function computes the polar angle arctan(y/x) of a point given by its cartesian coordinates. It is widely used in digital signal processing to...
SourceID ieee
SourceType Publisher
StartPage 34
SubjectTerms Accuracy
Approximation methods
arctangent
atan2
Computer architecture
Context
Field programmable gate arrays
FPGA arithmetic
Hardware
Polynomials
Title Hardware Implementations of Fixed-Point Atan2
URI https://ieeexplore.ieee.org/document/7203793
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjxVbcVvcvDopslms8kei1iqUCnSQm9lvwJFTKSmKP56Z5O0FfHgJSwhsNmPMG8z894DuDEiUgGTIaFaccKsSIgK8SIRvepUqYRSxx2ePPHxnD0u4kULbndcGGttVXxmfdescvmm0Bv3q2zgUoa4n9rQxm1Wc7V2GQPE7ZWRCoZcwtNU7PU0B8Pnh9nYVXHFvnMl-uGiUgWRURcm2-7r2pEXf1MqX3_9Umb87_sdQn9P1_Omu0B0BC2bH0N369fgNZ9vD4hL03_ItfUqTeDXhnaUv3tF5o1Wn9aQabHKS2-IiJH2YT66n92NSWOXQFY0SEuc6EBJlmjN8RgQGMudHJvlkeXa4gHYMJlwZlKVKKGoZZpyGmpFhZJSxFmkohPo5EVuT8GLVSQQK8gwzgxLDWIaiXHf4NNZGmodnkHPjX75VitiLJuBn_99-wIO3OTXBVaX0CnXG3uFobxU19UafgOqf5yW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86CnqZv42x48mtqmadochzg63caQDXYb-VUYYiuzQ_GvN2m7TcSDl1JKD0nT8l76fe89gBvFAuER7iMsBUVEswgJ3xy4Ya8yFiLC2GqHhyOaTMnjLJw14HajhdFal81n2rWnZS1f5XJlf5Xd2ZKheZ92YNfgPgkrtdamZmCYexmlYkAX0ThmW0fNu-5zf5LYPq7QtblEP3JUShjptWC4HkDVPfLirgrhyq9f3oz_HeEBdLaCPWe8gaJDaOjsCFrrxAan_oDbgGyh_oMvtVO6Ar_WwqPs3clTp7f41AqN80VWOF3DGXEHpr2HyX2C6sAEtMBeXJhH7QlOIimp2Qh4SlNryKZpoKnUZgusCI8oUbGIBBNYE4kp9qXATHDOwjQQwTE0szzTJ-CEImCGLXA_TBWJlWE13CC_MnensS-lfwptO_v5W-WJMa8nfvb35WvYSybDwXzQHz2dw75diKrd6gKaxXKlLw2wF-KqXM9vEm-f4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Symposium+on+Computer+Arithmetic&rft.atitle=Hardware+Implementations+of+Fixed-Point+Atan2&rft.au=De+Dinechin%2C+Florent&rft.au=Istoan%2C+Matei&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6889&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1109%2FARITH.2015.23&rft.externalDocID=7203793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6889&client=summon