Opportunistic Scheduling in Clouds Partially Powered by Green Energy

The fast growth of demand for computing and storage resources in data centers has considerably increased their energy consumption. Improving the utilization of data center resources and integrating renewable energy, such as solar and wind, has been proposed to reduce both the brown energy consumptio...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE International Conference on Data Science and Data Intensive Systems pp. 448 - 455
Main Authors Yunbo Li, Orgerie, Anne-Cecile, Menaud, Jean-Marc
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2015
Subjects
Online AccessGet full text
DOI10.1109/DSDIS.2015.80

Cover

Loading…
Abstract The fast growth of demand for computing and storage resources in data centers has considerably increased their energy consumption. Improving the utilization of data center resources and integrating renewable energy, such as solar and wind, has been proposed to reduce both the brown energy consumption and carbon footprint of the data centers. In this paper, we propose a novel framework oPportunistic schedulIng broKer infrAstructure (PIKA) to save energy in small mono-site data centers. In order to reduce the brown energy consumption, PIKA integrates resource overcommit techniques that help to minimize the number of powered-on Physical Machines (PMs). On the other hand, PIKA dynamically schedules the jobs and adjusts the number of powered-on PMs to match the variable renewable energy supply. Our simulations with a real-world job workload and solar power traces demonstrate that PIKA saves brown energy consumption by up to 44.9% compared to a typical scheduling algorithm.
AbstractList The fast growth of demand for computing and storage resources in data centers has considerably increased their energy consumption. Improving the utilization of data center resources and integrating renewable energy, such as solar and wind, has been proposed to reduce both the brown energy consumption and carbon footprint of the data centers. In this paper, we propose a novel framework oPportunistic schedulIng broKer infrAstructure (PIKA) to save energy in small mono-site data centers. In order to reduce the brown energy consumption, PIKA integrates resource overcommit techniques that help to minimize the number of powered-on Physical Machines (PMs). On the other hand, PIKA dynamically schedules the jobs and adjusts the number of powered-on PMs to match the variable renewable energy supply. Our simulations with a real-world job workload and solar power traces demonstrate that PIKA saves brown energy consumption by up to 44.9% compared to a typical scheduling algorithm.
Author Yunbo Li
Orgerie, Anne-Cecile
Menaud, Jean-Marc
Author_xml – sequence: 1
  surname: Yunbo Li
  fullname: Yunbo Li
  email: yunbo.li@emn.fr
  organization: IRISA, Ecole des Mines de Nantes, Rennes, France
– sequence: 2
  givenname: Anne-Cecile
  surname: Orgerie
  fullname: Orgerie, Anne-Cecile
  email: anne-cecile.orgerie@irisa.fr
  organization: IRISA, Rennes, France
– sequence: 3
  givenname: Jean-Marc
  surname: Menaud
  fullname: Menaud, Jean-Marc
  email: menaud@emn.fr
  organization: IRISA, Ecole des Mines de Nantes, Rennes, France
BookMark eNotzE1LwzAcgPEICrq5oycv-QKtSZqkyVHaOQeDDarnkZd_Z6CmJW2RfnsFd3rgd3hW6Db2ERB6oiSnlOiXuqn3Tc4IFbkiN2hFBdGEMMrlPdqMY7CEyVJyTdQDqo_D0KdpjmGcgsON-wI_dyFecIi46vrZj_hk0hRM1y341P9AAo_tgncJIOJthHRZHtFda7oRNteu0efb9qN6zw7H3b56PWSBETVl3JLSSc2Esi2TSjhfOG8kaK_9nyntGXDbOlYKyZlkXjhSCkEBPBhqebFGz__fAADnIYVvk5ZzWWgpCl38ApGpSsY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DSDIS.2015.80
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509002146
9781509002146
EndPage 455
ExternalDocumentID 7396539
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i208t-4b07c69258bf2685cd3cda6e9d9d58b89d2e4bfc27564262d5c07551eedea1b43
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:21 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-4b07c69258bf2685cd3cda6e9d9d58b89d2e4bfc27564262d5c07551eedea1b43
PageCount 8
ParticipantIDs ieee_primary_7396539
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Data Science and Data Intensive Systems
PublicationTitleAbbrev DSDIS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764908
Score 1.7010021
Snippet The fast growth of demand for computing and storage resources in data centers has considerably increased their energy consumption. Improving the utilization of...
SourceID ieee
SourceType Publisher
StartPage 448
SubjectTerms Biological system modeling
Cloud computing
Energy consumption
Optimization
Random access memory
Renewable energy sources
Servers
Title Opportunistic Scheduling in Clouds Partially Powered by Green Energy
URI https://ieeexplore.ieee.org/document/7396539
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akyc1YHynB4_usuy2pT2zEDRRSZCEG-ljMESyEN094K-3s8vDGA_eml467Uw608433xByxzra6NhCgNF-wJRk_h7UIhBScBNrpH8p0RbPYjhhj1M-rZH7fS0MAJTgMwhxWOby3coW-FXW7iYKmVTrpO4fblWt1s52YtEVmMM60Gi203H6MEbwFg-R9PFH85TSdwyOydNu1Qoy8h4WuQnt1y9Cxv-KdUJahyo9Otr7n1NSg6xJ0pc1RtSYpPYmQcdeJw7B5m90kdHeclW4TzpCc9HL5YaOsEcaOGo2tATg0H5ZCtgik0H_tTcMtp0SgkUcyTxgJupaoWIuzTwWkluXWKcFKKecn5PKxcDM3CLXO1LQO259qMA7XkDQHcOSM9LIVhmcE8oio6UwiY-8DIsSLsFpnRilDDDwj7EL0sQTmK0rMozZdvOXf09fkSNUQIX_uCaN_KOAG-_Fc3Nbqu8bYradug
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXh0l320pT3zCCogCZBwI31hiGQhunvAX29nl4cxHrw1vXTamXSmnW--QeiBhFLJSFsPon2PCE7cPSiZxzijKpJA_5KjLfqsMybPEzopocddLYy1NgefWR-GeS7fLHUGX2W1eiyASfUAHTq_T8OiWmtrPRGrM8hi7Yk0a81h82kI8C3qA-3jj_Ypufdon6Dedt0CNPLuZ6ny9dcvSsb_CnaKqvs6PTzYeaAzVLJJBTVfVxBTQ5raGQUeOq0YgJu_4XmCG4tlZj7xAAxGLhZrPIAuadZgtcY5BAe38mLAKhq3W6NGx9v0SvDmUcBTj6igrpmIKFeziHGqTayNZFYYYdwcFyayRM00sL0DCb2h2gULNHQCWhkqEp-jcrJM7AXCJFCSMxW72EuRIKbcGiljJYSyxLrn2CWqwAlMVwUdxnSz-au_p-_RUWfU6067T_2Xa3QMyijQIDeonH5k9tb59FTd5ar8Bs25oQM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Data+Science+and+Data+Intensive+Systems&rft.atitle=Opportunistic+Scheduling+in+Clouds+Partially+Powered+by+Green+Energy&rft.au=Yunbo+Li&rft.au=Orgerie%2C+Anne-Cecile&rft.au=Menaud%2C+Jean-Marc&rft.date=2015-12-01&rft.pub=IEEE&rft.spage=448&rft.epage=455&rft_id=info:doi/10.1109%2FDSDIS.2015.80&rft.externalDocID=7396539