Addressing cold start problem in recommender systems using association rules and clustering technique

Number of people who uses internet and websites for various purposes is increasing at an astonishing rate. More and more people rely on online sites for purchasing rented movies, songs, apparels, books etc. The competition between numbers of sites forced the web site owners to provide personalized s...

Full description

Saved in:
Bibliographic Details
Published in2013 International Conference on Computer Communication and Informatics pp. 1 - 5
Main Authors Sobhanam, H., Mariappan, A. K.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2013
Subjects
Online AccessGet full text
ISBN1467329061
9781467329064
DOI10.1109/ICCCI.2013.6466121

Cover

Abstract Number of people who uses internet and websites for various purposes is increasing at an astonishing rate. More and more people rely on online sites for purchasing rented movies, songs, apparels, books etc. The competition between numbers of sites forced the web site owners to provide personalized services to their customers. So the recommender systems came into existence. Recommender systems are active information filtering systems and that attempt to present to the user, information items in which the user is interested in. The websites implement recommender systems using collaborative filtering, content based or hybrid approaches. The recommender systems also suffer from issues like cold start, sparsity and over specialization. Cold start problem is that the recommenders cannot draw inferences for users or items for which it does not have sufficient information. This paper attempts to propose a solution to the cold start problem by combining association rules and clustering technique.
AbstractList Number of people who uses internet and websites for various purposes is increasing at an astonishing rate. More and more people rely on online sites for purchasing rented movies, songs, apparels, books etc. The competition between numbers of sites forced the web site owners to provide personalized services to their customers. So the recommender systems came into existence. Recommender systems are active information filtering systems and that attempt to present to the user, information items in which the user is interested in. The websites implement recommender systems using collaborative filtering, content based or hybrid approaches. The recommender systems also suffer from issues like cold start, sparsity and over specialization. Cold start problem is that the recommenders cannot draw inferences for users or items for which it does not have sufficient information. This paper attempts to propose a solution to the cold start problem by combining association rules and clustering technique.
Author Mariappan, A. K.
Sobhanam, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Sobhanam
  fullname: Sobhanam, H.
  email: sobhanamhridya@gmail.com
  organization: Dept. of Inf. Technol., Easwari Eng. Coll., Chennai, India
– sequence: 2
  givenname: A. K.
  surname: Mariappan
  fullname: Mariappan, A. K.
  email: maris2612@yahoo.com
  organization: Dept. of Inf. Technol., Easwari Eng. Coll., Chennai, India
BookMark eNo10E1PwzAMBuAgQIKN_QG45MhlI19L0uNU8TFpEpfdqzRxIahNR9we9u8pbJwsS89rW56Rq9QnIOSesxXnrHjalmW5XQnG5UorrbngF2RRGMuVNlIUzPBLMvtvNL8hC8QvxtgU1kKwWwKbEDIgxvRBfd8GioPLAz3kvm6hozHRDL7vOkgBMsUjDtAhHf-8Q-x9dEPsJzW2gNSlQH07Tij_ggH8Z4rfI9yR68a1CItznZP9y_O-fFvu3l-35Wa3jILZYSnqWhnerGsnPbfOGs117UNYWwbOWtMobde-qCXUunCeKa6smGgoDJgmyDl5PI2dzp-24lB1ET20rUvQj1hxy5hSUkox0YcTjQBQHXLsXD5W5x_KH_5baOU
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCCI.2013.6466121
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467329071
1467329053
9781467329057
146732907X
EndPage 5
ExternalDocumentID 6466121
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-2bb471f5ba3c18a87616bcdd580ea887f4685c9b3eb69ac0414823c1d97e7fd3
IEDL.DBID RIE
ISBN 1467329061
9781467329064
IngestDate Fri Jul 11 16:29:56 EDT 2025
Wed Aug 27 04:54:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-2bb471f5ba3c18a87616bcdd580ea887f4685c9b3eb69ac0414823c1d97e7fd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1800443332
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1800443332
ieee_primary_6466121
PublicationCentury 2000
PublicationDate 2013-Jan.
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationTitle 2013 International Conference on Computer Communication and Informatics
PublicationTitleAbbrev ICCCI
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106220
Score 1.6257437
Snippet Number of people who uses internet and websites for various purposes is increasing at an astonishing rate. More and more people rely on online sites for...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms association rule
Association rules
Clustering
cold start
Cold starts
Collaboration
Computers
Conferences
Customers
Filtering
Filtration
Recommender systems
Taxonomy
user profile
Websites
Title Addressing cold start problem in recommender systems using association rules and clustering technique
URI https://ieeexplore.ieee.org/document/6466121
https://www.proquest.com/docview/1800443332
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjyptGJ9sYJHkya7m01ylKC0QsVDhd7CPqZSbFNpk4u_3t1N0oJ68JbAZMnuDPPYmfkGoTvjM1BYhMojipkARUepJ0BIL4YkDARVgXRd79MXPn5jz_No3kH3-14YAHDFZ-DbR5fL1xtV2auyEWfcAl51UdeIWd2rdbhPMbENIYHr3eIxtSjmYQvp1LyztmkmSEeTLMsmtrKL-s2qzXiVXzrZGZqnYzRtf7GuL_nwq1L66usHeuN_93CCBoeWPvy6N1anqANFH8GD1q4OtnjHRiA0Nq7itsTNkBm8LLCNl9drN24O16DPO1w5enHgK95WK9hhUWisVpVFXrAEe3TYAZo9Pc6ysdfMXfCWJEhKj0hpTNYikoZXYSKMvgy5VFpHSQDCKKUF40mkUklB8lSogFksUUOq0xjihaZnqFdsCjhHOA5lwhVwSYgwkWMqWUSYYmarZtkwjoeob08o_6yRNfLmcIbotuVBbqTdpjBEAZtql4eJzUBTSsnF359eoiPiBlbYS5Ir1Cu3FVwbt6GUN05evgE99MBX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSkBoz4XBOPFtrd7bY9GqIBBeIBE27NPgZDhGKgvfjr3d0WSNSDtzaZbro7k3nszHyD0J3xGShMA-URxUyAosPEEyCkF0Ec-IIqX7qu9-GI997Y8ySc1ND9thcGAFzxGbTto8vl66Uq7FVZhzNuAa_20L6x-ywsu7V2NyomuiHEd91bPKIWxzzYgDpV72zTNuMnnX632-3b2i7artatBqz80srO1DwdoeHmJ8sKk492kcu2-vqB3_jfXRyj5q6pD79uzdUJqkHWQPCgtauEzd6xEQmNjbO4ynE1ZgbPMmwj5sXCDZzDJezzGheOXuw4i1fFHNZYZBqreWGxFyzBFh-2icZPj-Nuz6smL3gz4se5R6Q0RmsaSsOtIBZGYwZcKq3D2Adh1NKU8ThUiaQgeSKUzyyaqCHVSQTRVNNTVM-WGZwhHAUy5gq4JESY2DGRLCRMMbNVs2wQRS3UsCeUfpbYGml1OC10u-FBauTdJjFEBstinQaxzUFTSsn535_eoIPeeDhIB_3RywU6JG58hb0yuUT1fFXAlXEicnntZOcbfVPDpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+International+Conference+on+Computer+Communication+and+Informatics&rft.atitle=Addressing+cold+start+problem+in+recommender+systems+using+association+rules+and+clustering+technique&rft.au=Sobhanam%2C+H.&rft.au=Mariappan%2C+A.+K.&rft.date=2013-01-01&rft.pub=IEEE&rft.isbn=9781467329064&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCCI.2013.6466121&rft.externalDocID=6466121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467329064/sc.gif&client=summon&freeimage=true