Predicting Best Answerers for New Questions: An Approach Leveraging Distributed Representations of Words in Community Question Answering

Community Question Answering (CQA) sites are becoming an increasingly important source of information where users can share knowledge on various topics. Although these sites provide opportunities for users to seek for help or provide answers, they also bring new challenges. One of the challenges is...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Frontier of Computer Science and Technology (Print) pp. 13 - 18
Main Authors Hualei Dong, Jian Wang, Hongfei Lin, Bo Xu, Zhihao Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
ISSN2159-6301
DOI10.1109/FCST.2015.56

Cover

Loading…
Abstract Community Question Answering (CQA) sites are becoming an increasingly important source of information where users can share knowledge on various topics. Although these sites provide opportunities for users to seek for help or provide answers, they also bring new challenges. One of the challenges is most new questions posted everyday cannot be routed to the appropriate users who can answer them in CQA. That is to say, experts cannot receive questions that match their expertise. Therefore new questions cannot be answered in time. In this paper, we propose an approach which based on distributed representations of words to predict the best answerer for a new question on CQA sites. Our approach considers both user activity and user authority. The user activity and user authority are based on the previous questions answered by the user. We have applied our model on the dataset downloaded from StackOverflow, one of the biggest CQA sites. The results show that our approach performs better than the TF-IDF and Language Model based methods.
AbstractList Community Question Answering (CQA) sites are becoming an increasingly important source of information where users can share knowledge on various topics. Although these sites provide opportunities for users to seek for help or provide answers, they also bring new challenges. One of the challenges is most new questions posted everyday cannot be routed to the appropriate users who can answer them in CQA. That is to say, experts cannot receive questions that match their expertise. Therefore new questions cannot be answered in time. In this paper, we propose an approach which based on distributed representations of words to predict the best answerer for a new question on CQA sites. Our approach considers both user activity and user authority. The user activity and user authority are based on the previous questions answered by the user. We have applied our model on the dataset downloaded from StackOverflow, one of the biggest CQA sites. The results show that our approach performs better than the TF-IDF and Language Model based methods.
Author Hongfei Lin
Bo Xu
Hualei Dong
Zhihao Yang
Jian Wang
Author_xml – sequence: 1
  surname: Hualei Dong
  fullname: Hualei Dong
  organization: Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China
– sequence: 2
  surname: Jian Wang
  fullname: Jian Wang
  email: wangjian@dlut.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China
– sequence: 3
  surname: Hongfei Lin
  fullname: Hongfei Lin
  organization: Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China
– sequence: 4
  surname: Bo Xu
  fullname: Bo Xu
  organization: Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China
– sequence: 5
  surname: Zhihao Yang
  fullname: Zhihao Yang
  organization: Sch. of Comput. Sci. & Technol., Dalian Univ. of Technol., Dalian, China
BookMark eNo9kM1KAzEcxCNUsNbevHnJC2zN1yYbb3W1KhQ_Kx5LdvefGrDJkmwtfQMf21WLp4EZ5jcwx2jggweETimZUEr0-ax8WUwYofkklwdorFVBhVRcM52zARoymutMckKP0DglVxEmlcyJUEP09RihcXXn_ApfQurw1KctRIgJ2xDxPWzx06b3XfDpog_xtG1jMPU7nsMnRLP6KV651EVXbTpo8DO0ERL4zvx2cLD4LcQmYedxGdbrjXfd7p-5n-shJ-jQmo8E472O0OvselHeZvOHm7tyOs8cI0WXscIIKrQCWTMitWhsoYSyubC84lI2QEQtwfQP1KqiVje0qIysICcFpbUQfITO_rgOAJZtdGsTd0vF-8ME599TdGX5
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FCST.2015.56
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467392952
1467392952
1467392944
9781467392945
EndPage 18
ExternalDocumentID 7314643
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i208t-28a41497e6c20694df8747f54f3b366de04c6ea978c7b1f9d18ba6be50811c443
IEDL.DBID RIE
ISSN 2159-6301
IngestDate Wed Aug 27 02:51:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-28a41497e6c20694df8747f54f3b366de04c6ea978c7b1f9d18ba6be50811c443
PageCount 6
ParticipantIDs ieee_primary_7314643
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle International Conference on Frontier of Computer Science and Technology (Print)
PublicationTitleAbbrev FCST
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765047
ssj0003177943
Score 1.6847981
Snippet Community Question Answering (CQA) sites are becoming an increasingly important source of information where users can share knowledge on various topics....
SourceID ieee
SourceType Publisher
StartPage 13
SubjectTerms activity
authority
Computational modeling
CQA
distributed representations of words
History
Information retrieval
Knowledge discovery
Measurement
Natural language processing
Semantics
Title Predicting Best Answerers for New Questions: An Approach Leveraging Distributed Representations of Words in Community Question Answering
URI https://ieeexplore.ieee.org/document/7314643
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi03ZqmSettTscQJ0M33G0k7QsMoZO1Q_Qv8M_2pe2qiAdvpS1pSF7z3pd833uEXCSSAzOBcECA73Dje47iEXNEIqVSPWN8ZbcGxg9iNON382DeIJe1FgYACvIZuPayOMtPVvHGbpV1pY__NfebpInArdRqbW2HCYmxRhUa21UY_aIsSXPo1CJHoCHXvPeoOxw8TS2vK3Bt5eofdVUKtzLcJeNth0o2yYu7ybUbf_zK1fjfHu-RzreAj05q17RPGpC2yedkbU9lLM-ZXqMzoP00e8OX1xnFyJXickeL7U9riFf4kParfOP0HtDgi3JG9MYm2rU1siChjwWLthIvpRldGfqMWDajy5RWwpP8vW6z-hw20iGz4e10MHKqQgzOkvXC3GGh4oikJIiYWaFsYkJEISbAqdW-EAn0eCxAISCNpfZMlHihVkIDBn-eF3PuH5BWukrhkFCltYh0zCBQHveYDIVR3CiEodqEodJHpG1HcfFa5tpYVAN4_PftE7JjJ7Ek5J2SVr7ewBkGCbk-L6zjCzOIvPs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRAdu6dvOGKEEFQhQiN9JurwkxGYaNGP0L_LN93cY0xoO3ZVu6pn3r9177fe8RchEJBo72uAUcXItp17YkCxyLR0JI2dLalWZrYDDkvQm7n3rTCrkstTAAkJHPoGEus7P8aBGuzFZZU7j4XzN3g2wi7rMgV2utrcfhAr2Nwjk26zAio8hpcwhrgcXRlEvme9Dsdp7GhtnlNUzt6h-VVTJg6e6QwbpLOZ_kpbFKVSP8-JWt8b993iX1bwkfHZXgtEcqENfI52hpzmUM05leIxzQdpy84cvLhKLvSnHBo9kGqDHFK3xI20XGcdoHNPmsoBG9Mal2TZUsiOhjxqMt5EtxQheaPmM0m9B5TAvpSfpetll8Dhupk0n3dtzpWUUpBmvutPzUcnzJMJYSwEPHSGUj7WMcoj2cXOVyHkGLhRwkhqShULYOIttXkitA98-2Q8bcfVKNFzEcECqV4oEKHfCkzWxH-FxLpiUGokr7vlSHpGZGcfaaZ9uYFQN49Pftc7LVGw_6s_7d8OGYbJsJzel5J6SaLldwii5Dqs4yS_kCSfDASw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Frontier+of+Computer+Science+and+Technology+%28Print%29&rft.atitle=Predicting+Best+Answerers+for+New+Questions%3A+An+Approach+Leveraging+Distributed+Representations+of+Words+in+Community+Question+Answering&rft.au=Hualei+Dong&rft.au=Jian+Wang&rft.au=Hongfei+Lin&rft.au=Bo+Xu&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=2159-6301&rft.spage=13&rft.epage=18&rft_id=info:doi/10.1109%2FFCST.2015.56&rft.externalDocID=7314643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-6301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-6301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-6301&client=summon