Range-Sample Depth Feature for Action Recognition
We propose binary range-sample feature in depth. It is based on τ tests and achieves reasonable invariance with respect to possible change in scale, viewpoint, and background. It is robust to occlusion and data corruption as well. The descriptor works in a high speed thanks to its binary property. W...
Saved in:
Published in | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 772 - 779 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose binary range-sample feature in depth. It is based on τ tests and achieves reasonable invariance with respect to possible change in scale, viewpoint, and background. It is robust to occlusion and data corruption as well. The descriptor works in a high speed thanks to its binary property. Working together with standard learning algorithms, the proposed descriptor achieves state-of-the-art results on benchmark datasets in our experiments. Impressively short running time is also yielded. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1063-6919 1063-6919 2575-7075 |
DOI: | 10.1109/CVPR.2014.104 |