Bayesian Joint Topic Modelling for Weakly Supervised Object Localisation

We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framew...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 2984 - 2991
Main Authors Zhiyuan Shi, Hospedales, Timothy M., Tao Xiang
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.371

Cover

Loading…
Abstract We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framework based on Bayesian joint topic modelling. Our framework has three distinctive advantages over previous works: (1) All object classes and image backgrounds are modelled jointly together in a single generative model so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) The Bayesian formulation of the model enables easy integration of prior knowledge about object appearance to compensate for limited supervision. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Extensive experiments on the challenging VOC dataset demonstrate that our approach outperforms the state-of-the-art competitors.
AbstractList We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framework based on Bayesian joint topic modelling. Our framework has three distinctive advantages over previous works: (1) All object classes and image backgrounds are modelled jointly together in a single generative model so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) The Bayesian formulation of the model enables easy integration of prior knowledge about object appearance to compensate for limited supervision. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Extensive experiments on the challenging VOC dataset demonstrate that our approach outperforms the state-of-the-art competitors.
Author Zhiyuan Shi
Tao Xiang
Hospedales, Timothy M.
Author_xml – sequence: 1
  surname: Zhiyuan Shi
  fullname: Zhiyuan Shi
  email: zhiyuan.shi@eecs.qmul.ac.uk
  organization: Queen Mary, Univ. of London, London, UK
– sequence: 2
  givenname: Timothy M.
  surname: Hospedales
  fullname: Hospedales, Timothy M.
  email: tmh@eecs.qmul.ac.uk
  organization: Queen Mary, Univ. of London, London, UK
– sequence: 3
  surname: Tao Xiang
  fullname: Tao Xiang
  email: txiang@eecs.qmul.ac.uk
  organization: Queen Mary, Univ. of London, London, UK
BookMark eNotjztPwzAUhY1UJNrCyMTikSXF145jZ4QIaFFRBwqMkePcIJc0DnGK1H-PpTKd4Xw6jxmZdL5DQq6BLQBYfrcqio8FZyAWQsEZmUGq8pzrlPEJmYKULJFpnl-QWQg7xkS0silZPpgjBmc6-uJdN9Kt752lr77GtnXdF238QD_RfLdH-nbocfh1AWu6qXZoR7r21rQumNH57pKcN6YNePWvc_L-9Lgtlsl687wq7teJ40yPCehU2hy4gKgms1owVJWFVCvLdMWqpgbBOQhR80ZlUqhUItTMoq4hcmJObk-5_eB_DhjGcu-CjWtNh_4QSsiyXMssvovozQl1iFj2g9ub4VhmSsY2Lv4AujRZyQ
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2013.371
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1479928402
9781479928408
EndPage 2991
ExternalDocumentID 6751482
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-1845c9123145ca6c830e7bc1487c08b0bfd1322133d2f7653745e1d0ce8d1bc13
IEDL.DBID RIE
ISSN 1550-5499
IngestDate Fri Jul 11 04:59:19 EDT 2025
Wed Aug 27 04:21:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-1845c9123145ca6c830e7bc1487c08b0bfd1322133d2f7653745e1d0ce8d1bc13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1669856928
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1669856928
ieee_primary_6751482
PublicationCentury 2000
PublicationDate 20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 01
PublicationDecade 2010
PublicationTitle 2013 IEEE International Conference on Computer Vision
PublicationTitleAbbrev iccv
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssj0001967680
Score 2.351634
Snippet We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2984
SubjectTerms Bayes methods
Bayesian
Bayesian analysis
Computational modeling
Computer vision
Conferences
Data models
Detectors
Internet
Joint Topic Modelling
Joints
Learning
Mathematical models
Modelling
Semisupervised learning
Supervised learning
Weakly Supervised
Title Bayesian Joint Topic Modelling for Weakly Supervised Object Localisation
URI https://ieeexplore.ieee.org/document/6751482
https://www.proquest.com/docview/1669856928
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYMRX1sSjLd12u7RXiQSJr0RQbk33lRBMS6Q94K93dlsgUQ-e2kO3ncxsZ76ZnQdC14GOYl_S2NGcModSrZyU6thRvuQk4FpqabN8n9hoSsezcNZAN9taGKWUTT5Trrm1Z_kyF6UJlfUA3Jq2lXtoDxy3qlZrF0-JGSBnb6OFwezbKY8GgTvGB9r11-zdDwZvJqkrcANbOW8-9EsVW_sybKHHDWVVWsnCLQvuiq8fTRv_S_oB6uwq-fDL1kYdoobKjlCrhp64_rFXbTS6TdfK1FPicT7PCjzJl3OBzaA027MbA7TF7ypdfKzxa7k0-mUF65-5ieLgB2MP67SgDpoO7yaDkVMPWXDmvhcVDnh4oYjBfhG4pkxEgaf6XACxfeFF3ANxGYcVXFnp6z4Lgz4NFZGeUJEk8FxwjJpZnqkThLVMqScE5SwGVBP6nESShoQHNKWEc9JFbcOYZFn10UhqnnTR1Yb1Cextc2CRZiovVwlh8KaQgShP_156hvaNHKv0knPULD5LdQEgoeCXdnd8A4ohuY4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECkZ8rolHC912W9qrRAIIaCIot6b7aEIwLZH2gL_e2VIgUQ-e2kO3ncxsZ76ZnQfAnR15viWZb0ScuQZjkTJCFvmGsiSnNo9kJPMs35HbnbD-1JmW4H5bC6OUypPPVEPf5mf5MhGZDpU1EdzqtpV7sI92n_nraq1dRMV3ETubGz2Mhj-f86gxuKG9oF2HzWav3X7TaV12w85r5_Wnfinj3MJ0KjDc0LZOLJk3spQ3xNePto3_Jf4IartaPvKytVLHUFLxCVQK8EmKX3tZhe5DuFK6opL0k1mcknGymAmiR6XlXbsJglvyrsL5x4q8ZgutYZa4_pnrOA4ZaItYJAbVYNJ5HLe7RjFmwZhZppca6OM5wkcLRvEausKzTdXiAoltCdPjJgpMu6zozEorarmO3WKOotIUypMUn7NPoRwnsToDEsmQmUIw7vqIaxyLU08yh3KbhYxyTutQ1YwJFutOGkHBkzrcblgf4O7WRxZhrJJsGVAX3-S4KMrzv5fewEF3PBwEg97o6QIOtUzXySaXUE4_M3WFkCHl1_lO-QZ5Bbze
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Bayesian+Joint+Topic+Modelling+for+Weakly+Supervised+Object+Localisation&rft.au=Zhiyuan+Shi&rft.au=Hospedales%2C+Timothy+M.&rft.au=Tao+Xiang&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=2984&rft.epage=2991&rft_id=info:doi/10.1109%2FICCV.2013.371&rft.externalDocID=6751482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon