Bayesian Joint Topic Modelling for Weakly Supervised Object Localisation
We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framew...
Saved in:
Published in | 2013 IEEE International Conference on Computer Vision pp. 2984 - 2991 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-5499 |
DOI | 10.1109/ICCV.2013.371 |
Cover
Loading…
Abstract | We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framework based on Bayesian joint topic modelling. Our framework has three distinctive advantages over previous works: (1) All object classes and image backgrounds are modelled jointly together in a single generative model so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) The Bayesian formulation of the model enables easy integration of prior knowledge about object appearance to compensate for limited supervision. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Extensive experiments on the challenging VOC dataset demonstrate that our approach outperforms the state-of-the-art competitors. |
---|---|
AbstractList | We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. We propose a novel framework based on Bayesian joint topic modelling. Our framework has three distinctive advantages over previous works: (1) All object classes and image backgrounds are modelled jointly together in a single generative model so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) The Bayesian formulation of the model enables easy integration of prior knowledge about object appearance to compensate for limited supervision. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Extensive experiments on the challenging VOC dataset demonstrate that our approach outperforms the state-of-the-art competitors. |
Author | Zhiyuan Shi Tao Xiang Hospedales, Timothy M. |
Author_xml | – sequence: 1 surname: Zhiyuan Shi fullname: Zhiyuan Shi email: zhiyuan.shi@eecs.qmul.ac.uk organization: Queen Mary, Univ. of London, London, UK – sequence: 2 givenname: Timothy M. surname: Hospedales fullname: Hospedales, Timothy M. email: tmh@eecs.qmul.ac.uk organization: Queen Mary, Univ. of London, London, UK – sequence: 3 surname: Tao Xiang fullname: Tao Xiang email: txiang@eecs.qmul.ac.uk organization: Queen Mary, Univ. of London, London, UK |
BookMark | eNotjztPwzAUhY1UJNrCyMTikSXF145jZ4QIaFFRBwqMkePcIJc0DnGK1H-PpTKd4Xw6jxmZdL5DQq6BLQBYfrcqio8FZyAWQsEZmUGq8pzrlPEJmYKULJFpnl-QWQg7xkS0silZPpgjBmc6-uJdN9Kt752lr77GtnXdF238QD_RfLdH-nbocfh1AWu6qXZoR7r21rQumNH57pKcN6YNePWvc_L-9Lgtlsl687wq7teJ40yPCehU2hy4gKgms1owVJWFVCvLdMWqpgbBOQhR80ZlUqhUItTMoq4hcmJObk-5_eB_DhjGcu-CjWtNh_4QSsiyXMssvovozQl1iFj2g9ub4VhmSsY2Lv4AujRZyQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding Journal Article |
DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/ICCV.2013.371 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1479928402 9781479928408 |
EndPage | 2991 |
ExternalDocumentID | 6751482 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-i208t-1845c9123145ca6c830e7bc1487c08b0bfd1322133d2f7653745e1d0ce8d1bc13 |
IEDL.DBID | RIE |
ISSN | 1550-5499 |
IngestDate | Fri Jul 11 04:59:19 EDT 2025 Wed Aug 27 04:21:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i208t-1845c9123145ca6c830e7bc1487c08b0bfd1322133d2f7653745e1d0ce8d1bc13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
PQID | 1669856928 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1669856928 ieee_primary_6751482 |
PublicationCentury | 2000 |
PublicationDate | 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 20131201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | iccv |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 ssj0001967680 |
Score | 2.351634 |
Snippet | We address the problem of localisation of objects as bounding boxes in images with weak labels. This weakly supervised object localisation problem has been... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2984 |
SubjectTerms | Bayes methods Bayesian Bayesian analysis Computational modeling Computer vision Conferences Data models Detectors Internet Joint Topic Modelling Joints Learning Mathematical models Modelling Semisupervised learning Supervised learning Weakly Supervised |
Title | Bayesian Joint Topic Modelling for Weakly Supervised Object Localisation |
URI | https://ieeexplore.ieee.org/document/6751482 https://www.proquest.com/docview/1669856928 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYMRX1sSjLd12u7RXiQSJr0RQbk33lRBMS6Q94K93dlsgUQ-e2kO3ncxsZ76ZnQdC14GOYl_S2NGcModSrZyU6thRvuQk4FpqabN8n9hoSsezcNZAN9taGKWUTT5Trrm1Z_kyF6UJlfUA3Jq2lXtoDxy3qlZrF0-JGSBnb6OFwezbKY8GgTvGB9r11-zdDwZvJqkrcANbOW8-9EsVW_sybKHHDWVVWsnCLQvuiq8fTRv_S_oB6uwq-fDL1kYdoobKjlCrhp64_rFXbTS6TdfK1FPicT7PCjzJl3OBzaA027MbA7TF7ypdfKzxa7k0-mUF65-5ieLgB2MP67SgDpoO7yaDkVMPWXDmvhcVDnh4oYjBfhG4pkxEgaf6XACxfeFF3ANxGYcVXFnp6z4Lgz4NFZGeUJEk8FxwjJpZnqkThLVMqScE5SwGVBP6nESShoQHNKWEc9JFbcOYZFn10UhqnnTR1Yb1Cextc2CRZiovVwlh8KaQgShP_156hvaNHKv0knPULD5LdQEgoeCXdnd8A4ohuY4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECkZ8rolHC912W9qrRAIIaCIot6b7aEIwLZH2gL_e2VIgUQ-e2kO3ncxsZ76ZnQfAnR15viWZb0ScuQZjkTJCFvmGsiSnNo9kJPMs35HbnbD-1JmW4H5bC6OUypPPVEPf5mf5MhGZDpU1EdzqtpV7sI92n_nraq1dRMV3ETubGz2Mhj-f86gxuKG9oF2HzWav3X7TaV12w85r5_Wnfinj3MJ0KjDc0LZOLJk3spQ3xNePto3_Jf4IartaPvKytVLHUFLxCVQK8EmKX3tZhe5DuFK6opL0k1mcknGymAmiR6XlXbsJglvyrsL5x4q8ZgutYZa4_pnrOA4ZaItYJAbVYNJ5HLe7RjFmwZhZppca6OM5wkcLRvEausKzTdXiAoltCdPjJgpMu6zozEorarmO3WKOotIUypMUn7NPoRwnsToDEsmQmUIw7vqIaxyLU08yh3KbhYxyTutQ1YwJFutOGkHBkzrcblgf4O7WRxZhrJJsGVAX3-S4KMrzv5fewEF3PBwEg97o6QIOtUzXySaXUE4_M3WFkCHl1_lO-QZ5Bbze |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Bayesian+Joint+Topic+Modelling+for+Weakly+Supervised+Object+Localisation&rft.au=Zhiyuan+Shi&rft.au=Hospedales%2C+Timothy+M.&rft.au=Tao+Xiang&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1550-5499&rft.spage=2984&rft.epage=2991&rft_id=info:doi/10.1109%2FICCV.2013.371&rft.externalDocID=6751482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-5499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-5499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-5499&client=summon |